Home
Class 12
MATHS
If a,b,c are non zero real numbers then ...

If a,b,c are non zero real numbers then
`Delta=|(1,ab,1/a+1/b),(1,bc,1/b+1/c),(1,ca,1/c+1/a)|` equals

A

0

B

`bc+ca+ab`

C

`a^(-1)+b^(-1)+c^(-1)`

D

`abc-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & ab & \frac{1}{a} + \frac{1}{b} \\ 1 & bc & \frac{1}{b} + \frac{1}{c} \\ 1 & ca & \frac{1}{c} + \frac{1}{a} \end{vmatrix} \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant as given: \[ \Delta = \begin{vmatrix} 1 & ab & \frac{1}{a} + \frac{1}{b} \\ 1 & bc & \frac{1}{b} + \frac{1}{c} \\ 1 & ca & \frac{1}{c} + \frac{1}{a} \end{vmatrix} \] ### Step 2: Apply Row Operations We can simplify the determinant by performing row operations. We will subtract the first row from the second and third rows: \[ \Delta = \begin{vmatrix} 1 & ab & \frac{1}{a} + \frac{1}{b} \\ 0 & bc - ab & \left(\frac{1}{b} + \frac{1}{c}\right) - \left(\frac{1}{a} + \frac{1}{b}\right) \\ 0 & ca - ab & \left(\frac{1}{c} + \frac{1}{a}\right) - \left(\frac{1}{a} + \frac{1}{b}\right) \end{vmatrix} \] ### Step 3: Simplify the Second and Third Rows Now, simplifying the second and third rows: - For the second row: \[ \left(\frac{1}{b} + \frac{1}{c}\right) - \left(\frac{1}{a} + \frac{1}{b}\right) = \frac{1}{c} - \frac{1}{a} = \frac{a - c}{ac} \] - For the third row: \[ \left(\frac{1}{c} + \frac{1}{a}\right) - \left(\frac{1}{a} + \frac{1}{b}\right) = \frac{1}{c} - \frac{1}{b} = \frac{b - c}{bc} \] Thus, we have: \[ \Delta = \begin{vmatrix} 1 & ab & \frac{1}{a} + \frac{1}{b} \\ 0 & bc - ab & \frac{a - c}{ac} \\ 0 & ca - ab & \frac{b - c}{bc} \end{vmatrix} \] ### Step 4: Factor Out Common Terms Next, we can factor out \( (bc - ab) \) and \( (ca - ab) \) from the second and third rows respectively: \[ \Delta = (bc - ab)(ca - ab) \begin{vmatrix} 1 & ab & \frac{1}{a} + \frac{1}{b} \\ 0 & 1 & \frac{a - c}{(bc - ab)ac} \\ 0 & 1 & \frac{b - c}{(ca - ab)bc} \end{vmatrix} \] ### Step 5: Observe the Columns Notice that the second and third columns of the determinant are now identical (after appropriate simplifications). Therefore, the determinant evaluates to zero: \[ \Delta = 0 \] ### Conclusion Thus, the value of the determinant \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are even natural numbers, then Delta=|{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}| is a multiple of

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

If a, b and c are non-zero real numbers and |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=0 , then what is the value of (1)/(a) + (1)/(b) + (1)/(c) ?

If a,b, and c be non-zero real numbers such that |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|=0" " "then"" "1+1/a+1/b+1/c is

The minor M_(31) if Delta = |(1, a, bc),(1, b, ca),(1, c, ab)| is

(1)/(a),1,bc(1)/(b),1,ca(1)/(c),1,ab]|=0

Prove that |{:(1,,ab,,(1)/(a)+(1)/(b)),(1 ,,bc,,(1)/(b)+(1)/(c)),( 1,, ca,,(1)/(c)+(1)/(a)):}|=0

Delta=det[[1,a,bc1,b,ca1,c,ab]]

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If Delta=|(-a,2b,0),(0,-a,2b),(2b,0,-a)|=0 then

    Text Solution

    |

  2. The determinant Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)| equals

    Text Solution

    |

  3. If a,b,c are non zero real numbers then Delta=|(1,ab,1/a+1/b),(1,bc,...

    Text Solution

    |

  4. If a,b,c gt1 then Delta=|(log(a)(abc),log(a)b,log(a)c),(logb(abc),1,lo...

    Text Solution

    |

  5. Prove that /\ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2...

    Text Solution

    |

  6. Let Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,...

    Text Solution

    |

  7. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  8. If |{:(6i,-3i,1),(4,3i,1),(20,3,i):}|=x+iy,i=sqrt(-1) then

    Text Solution

    |

  9. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  10. if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-...

    Text Solution

    |

  11. If e^(lx)=cosx+isinx and x+iy=|(1,e^(pi i//4),e^(pi i//3)),(e^(-pi i...

    Text Solution

    |

  12. If a,b,c,in R, find the number of real root of the equation |{:(x,c,-b...

    Text Solution

    |

  13. If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),x,x):}| =3 then the value of |{:(...

    Text Solution

    |

  14. If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos al...

    Text Solution

    |

  15. Suppose a,b,c epsilon R and a,b,c gt 0. Let Delta=|(loga, logb, logc...

    Text Solution

    |

  16. The value of theta , lying between theta =0 and theta=(pi)/(2) and ...

    Text Solution

    |

  17. Solve |{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,...

    Text Solution

    |

  18. If a(r)="cos"(2rpi)/9+i "sin"(2rpi)/9 then value of the determinant ...

    Text Solution

    |

  19. If a!=p,b!=q,c!=r and the system of equations px+by+cz=0 ax+qy+cz=...

    Text Solution

    |

  20. For a fixed positive integer n if D= |(n!, (n+1)!, (n+2)!),((n+1)!, (n...

    Text Solution

    |