Home
Class 12
MATHS
If a,b,c gt1 then Delta=|(log(a)(abc),lo...

If `a,b,c gt1` then `Delta=|(log_(a)(abc),log_(a)b,log_(a)c),(log_b(abc),1,log_(b)c),(log_(c)(abc),log_(c)b,1)|` equals

A

0

B

`log_(a)b+log_(b)c+log_(c)a`

C

`log_(abc)(a+b+c)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} \log_a(abc) & \log_a b & \log_a c \\ \log_b(abc) & 1 & \log_b c \\ \log_c(abc) & \log_c b & 1 \end{vmatrix} \] ### Step 1: Rewrite the logarithms using natural logarithms We can express the logarithms in terms of natural logarithms (ln) using the change of base formula: \[ \log_a x = \frac{\ln x}{\ln a} \] Thus, we can rewrite each term in the determinant: - \(\log_a(abc) = \frac{\ln(abc)}{\ln a} = \frac{\ln a + \ln b + \ln c}{\ln a}\) - \(\log_a b = \frac{\ln b}{\ln a}\) - \(\log_a c = \frac{\ln c}{\ln a}\) - \(\log_b(abc) = \frac{\ln(abc)}{\ln b} = \frac{\ln a + \ln b + \ln c}{\ln b}\) - \(\log_b c = \frac{\ln c}{\ln b}\) - \(\log_c(abc) = \frac{\ln(abc)}{\ln c} = \frac{\ln a + \ln b + \ln c}{\ln c}\) - \(\log_c b = \frac{\ln b}{\ln c}\) Substituting these into the determinant gives us: \[ \Delta = \begin{vmatrix} \frac{\ln(abc)}{\ln a} & \frac{\ln b}{\ln a} & \frac{\ln c}{\ln a} \\ \frac{\ln(abc)}{\ln b} & 1 & \frac{\ln c}{\ln b} \\ \frac{\ln(abc)}{\ln c} & \frac{\ln b}{\ln c} & 1 \end{vmatrix} \] ### Step 2: Factor out the common terms from each row We can factor out \(\frac{1}{\ln a}\), \(\frac{1}{\ln b}\), and \(\frac{1}{\ln c}\) from the respective rows: \[ \Delta = \frac{1}{\ln a \cdot \ln b \cdot \ln c} \begin{vmatrix} \ln(abc) & \ln b & \ln c \\ \ln(abc) & \ln b & \ln c \\ \ln(abc) & \ln b & \ln c \end{vmatrix} \] ### Step 3: Analyze the determinant Notice that the first and second rows (and the first and third rows) of the determinant are identical. According to the properties of determinants, if two rows (or two columns) are identical, the value of the determinant is zero. ### Conclusion Thus, we conclude that: \[ \Delta = 0 \] ### Final Answer The value of the determinant \(\Delta\) is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

a^(log_(b)c)=c^(log_(b)a)

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

Show that log_(b)a log_(c)b log_(a)c=1

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)

Suppose a,b,cgt1 . Let Delta=|(loga,logb,logc),(log(2007a),log(2007b),log(2007c)),(log(2017a),log(2017b),log(2017c))| then Delta is equal to

(1)/(log_(a)(b))xx(1)/(log_(b)(c))xx(1)/(log_(c)(a)) is equal to

The value of (1)/(log_(a)abc)+(1)/(log_(b)abc)+(1)/(log_(c)abc)

log_(a)b xx log_(b)c xx log_(c) d xx log_(d)a is equal to

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. The determinant Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)| equals

    Text Solution

    |

  2. If a,b,c are non zero real numbers then Delta=|(1,ab,1/a+1/b),(1,bc,...

    Text Solution

    |

  3. If a,b,c gt1 then Delta=|(log(a)(abc),log(a)b,log(a)c),(logb(abc),1,lo...

    Text Solution

    |

  4. Prove that /\ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2...

    Text Solution

    |

  5. Let Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,...

    Text Solution

    |

  6. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  7. If |{:(6i,-3i,1),(4,3i,1),(20,3,i):}|=x+iy,i=sqrt(-1) then

    Text Solution

    |

  8. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  9. if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-...

    Text Solution

    |

  10. If e^(lx)=cosx+isinx and x+iy=|(1,e^(pi i//4),e^(pi i//3)),(e^(-pi i...

    Text Solution

    |

  11. If a,b,c,in R, find the number of real root of the equation |{:(x,c,-b...

    Text Solution

    |

  12. If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),x,x):}| =3 then the value of |{:(...

    Text Solution

    |

  13. If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos al...

    Text Solution

    |

  14. Suppose a,b,c epsilon R and a,b,c gt 0. Let Delta=|(loga, logb, logc...

    Text Solution

    |

  15. The value of theta , lying between theta =0 and theta=(pi)/(2) and ...

    Text Solution

    |

  16. Solve |{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,...

    Text Solution

    |

  17. If a(r)="cos"(2rpi)/9+i "sin"(2rpi)/9 then value of the determinant ...

    Text Solution

    |

  18. If a!=p,b!=q,c!=r and the system of equations px+by+cz=0 ax+qy+cz=...

    Text Solution

    |

  19. For a fixed positive integer n if D= |(n!, (n+1)!, (n+2)!),((n+1)!, (n...

    Text Solution

    |

  20. If a, b, c are in A.P., and Delta=|[x+2,x+7,a],[x+5,x+11,b],[x+8,x+15,...

    Text Solution

    |