Home
Class 12
MATHS
Let Delta=|(1,sin theta, 1),(-sin theta,...

Let `Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,1)|0,le theta le 2pi`. The

A

`Delta=0`

B

`Delta epsilon (2,oo)`

C

`Delta epsilon (2,4)`

D

`Delta epsilon [2,4]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix} \), we will calculate the determinant step by step. ### Step 1: Write down the determinant We start with the determinant: \[ \Delta = \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix} \] ### Step 2: Use the determinant formula The formula for a 3x3 determinant is: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] For our matrix: - \( a = 1, b = \sin \theta, c = 1 \) - \( d = -\sin \theta, e = 1, f = \sin \theta \) - \( g = -1, h = -\sin \theta, i = 1 \) ### Step 3: Calculate the determinant Now we calculate each part: 1. \( ei - fh = 1 \cdot 1 - \sin \theta \cdot (-\sin \theta) = 1 + \sin^2 \theta \) 2. \( di - fg = -\sin \theta \cdot 1 - \sin \theta \cdot (-1) = -\sin \theta + \sin \theta = 0 \) 3. \( dh - eg = -\sin \theta \cdot (-\sin \theta) - 1 \cdot (-1) = \sin^2 \theta + 1 \) Putting it all together: \[ \Delta = 1 \cdot (1 + \sin^2 \theta) - \sin \theta \cdot 0 + 1 \cdot (\sin^2 \theta + 1) \] This simplifies to: \[ \Delta = 1 + \sin^2 \theta + \sin^2 \theta + 1 = 2 + 2\sin^2 \theta \] ### Step 4: Analyze the range of \( \Delta \) Now we need to find the range of \( \Delta \): \[ \Delta = 2 + 2\sin^2 \theta \] Since \( \sin^2 \theta \) varies from 0 to 1 for \( 0 \leq \theta \leq 2\pi \): - Minimum value of \( \Delta \) occurs when \( \sin^2 \theta = 0 \): \[ \Delta_{\text{min}} = 2 + 2 \cdot 0 = 2 \] - Maximum value of \( \Delta \) occurs when \( \sin^2 \theta = 1 \): \[ \Delta_{\text{max}} = 2 + 2 \cdot 1 = 4 \] ### Conclusion Thus, the value of \( \Delta \) lies in the interval: \[ 2 \leq \Delta \leq 4 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let Delta(theta)=|(1, sin theta, 1),(sin theta, 1, sin theta),(-1, -sin theta , 1)|, 0 le theta le 2pi solution of Delta(theta)=3 is

Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)], " where " 0 le theta lt 2 pi . then, which of the following is not correct ?

let Delta=det[[1,sin theta,1-sin theta,1,sin theta-1,-sin theta,1]],0<=theta<=2 pi

Let A=det[[1,sin theta,1-sin theta,1,sin theta-1,-sin theta,1]], where 0<=theta<=2 pi. Then Det(A)=0(b)Det(A)in(2,oo)Det(A)in(2,4)(d) Det (A)in[2,4]

cos theta/(1+sin theta)=(1-sin theta)/cos theta

sqrt((1+sin theta)/(1-sin theta))+sqrt((1-sin theta)/(1+sin theta))=2sec theta

If A= [{:(1, "sin"theta,1), (-"sin"theta, 1, "sin" theta),(-1, -"sin"theta, 1):}], " then for all "theta in ((3pi)/(4), (5pi)/(4)) det (A) lies in the interval

Prove that (1+sin theta)/(1-sin theta)-(1-sin theta)/(1+sin theta)=4sec theta tan theta

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If a,b,c gt1 then Delta=|(log(a)(abc),log(a)b,log(a)c),(logb(abc),1,lo...

    Text Solution

    |

  2. Prove that /\ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2...

    Text Solution

    |

  3. Let Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,...

    Text Solution

    |

  4. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  5. If |{:(6i,-3i,1),(4,3i,1),(20,3,i):}|=x+iy,i=sqrt(-1) then

    Text Solution

    |

  6. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  7. if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-...

    Text Solution

    |

  8. If e^(lx)=cosx+isinx and x+iy=|(1,e^(pi i//4),e^(pi i//3)),(e^(-pi i...

    Text Solution

    |

  9. If a,b,c,in R, find the number of real root of the equation |{:(x,c,-b...

    Text Solution

    |

  10. If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),x,x):}| =3 then the value of |{:(...

    Text Solution

    |

  11. If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos al...

    Text Solution

    |

  12. Suppose a,b,c epsilon R and a,b,c gt 0. Let Delta=|(loga, logb, logc...

    Text Solution

    |

  13. The value of theta , lying between theta =0 and theta=(pi)/(2) and ...

    Text Solution

    |

  14. Solve |{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,...

    Text Solution

    |

  15. If a(r)="cos"(2rpi)/9+i "sin"(2rpi)/9 then value of the determinant ...

    Text Solution

    |

  16. If a!=p,b!=q,c!=r and the system of equations px+by+cz=0 ax+qy+cz=...

    Text Solution

    |

  17. For a fixed positive integer n if D= |(n!, (n+1)!, (n+2)!),((n+1)!, (n...

    Text Solution

    |

  18. If a, b, c are in A.P., and Delta=|[x+2,x+7,a],[x+5,x+11,b],[x+8,x+15,...

    Text Solution

    |

  19. If Delta=|(1+y,1-y,1-y),(1-y,1+y,1-y),(1-y,1-y,1+y)|=0, then value of ...

    Text Solution

    |

  20. The determinant Delta=|(al+a'l',am+a'm',an+a'n'),(bl+b'l',bm+b'm',bn...

    Text Solution

    |