Home
Class 12
MATHS
If a(r)="cos"(2rpi)/9+i "sin"(2rpi)/9 th...

If `a_(r)="cos"(2rpi)/9+i "sin"(2rpi)/9` then value of the determinant
`Delta=|(1,a_(8),a_(7)),(a_(3),a_(2),a_(1)),(a_(6),a_(5),a_(4))|` is

A

`-1`

B

`1`

C

0

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & a_8 & a_7 \\ a_3 & a_2 & a_1 \\ a_6 & a_5 & a_4 \end{vmatrix} \) where \( a_r = \cos\left(\frac{2r\pi}{9}\right) + i \sin\left(\frac{2r\pi}{9}\right) \), we can recognize that \( a_r \) can be expressed as \( a_r = e^{\frac{2\pi ir}{9}} \). ### Step 1: Express the elements of the determinant The elements of the determinant can be rewritten using the exponential form: - \( a_1 = e^{\frac{2\pi i \cdot 1}{9}} \) - \( a_2 = e^{\frac{2\pi i \cdot 2}{9}} \) - \( a_3 = e^{\frac{2\pi i \cdot 3}{9}} \) - \( a_4 = e^{\frac{2\pi i \cdot 4}{9}} \) - \( a_5 = e^{\frac{2\pi i \cdot 5}{9}} \) - \( a_6 = e^{\frac{2\pi i \cdot 6}{9}} \) - \( a_7 = e^{\frac{2\pi i \cdot 7}{9}} \) - \( a_8 = e^{\frac{2\pi i \cdot 8}{9}} \) ### Step 2: Substitute into the determinant Now substitute these values into the determinant: \[ \Delta = \begin{vmatrix} 1 & e^{\frac{2\pi i \cdot 8}{9}} & e^{\frac{2\pi i \cdot 7}{9}} \\ e^{\frac{2\pi i \cdot 3}{9}} & e^{\frac{2\pi i \cdot 2}{9}} & e^{\frac{2\pi i \cdot 1}{9}} \\ e^{\frac{2\pi i \cdot 6}{9}} & e^{\frac{2\pi i \cdot 5}{9}} & e^{\frac{2\pi i \cdot 4}{9}} \end{vmatrix} \] ### Step 3: Factor out common terms Notice that each column can be factored by \( e^{\frac{2\pi i}{9}} \): \[ \Delta = e^{\frac{2\pi i}{9}} \begin{vmatrix} 1 & e^{\frac{2\pi i \cdot 8}{9}} & e^{\frac{2\pi i \cdot 7}{9}} \\ e^{\frac{2\pi i \cdot 3}{9}} & e^{\frac{2\pi i \cdot 2}{9}} & e^{\frac{2\pi i \cdot 1}{9}} \\ e^{\frac{2\pi i \cdot 6}{9}} & e^{\frac{2\pi i \cdot 5}{9}} & e^{\frac{2\pi i \cdot 4}{9}} \end{vmatrix} \] ### Step 4: Simplify the determinant The determinant can be simplified using properties of determinants. The determinant of a matrix with complex exponentials can be computed using the roots of unity. The values \( e^{\frac{2\pi i k}{9}} \) for \( k = 0, 1, \ldots, 8 \) are the 9th roots of unity. ### Step 5: Calculate the determinant The determinant evaluates to zero because the rows are linearly dependent (as they are derived from the same set of roots of unity). Thus, we find: \[ \Delta = 0 \] ### Final Answer The value of the determinant \( \Delta \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If a^(r) = (cos 2 r pi + I sin 2 r pi )^(1//9) , then the value of |{:(a_(1), a_(2), a_(3)),(a_(4), a_(5), a^(6)),(a_(7) , a_(8), a_(9)):}| is

If a_(1),a_(2),a_(3),….,a_(r) are in GP, then prove that the determinant |(a_(r+1),a_(r+5),a_(r+9)),(a_(r+7),a_(r+11),a_(4+15)),(a_(r+11),a_(r+17),a_(r+21))| is independent of r .

(a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

If a_(1), a_(2), a_(3), …., a_(9) are in GP, then what is the value of the following determinant? |(ln a_(1), ln a_(2), ln a_(3)),(lna_(4), lna_(5), ln a_(6)), (ln a_(7), ln a_(8), ln a_(9))|

If a_(1),a_(2),a_(3),... a _(12) are in A.P. with common difference equal to ((1)/(sqrt(2))) then the value of Delta=|[a_(1)a_(5),a_(1),a_(2)],[a_(2)a_(6),a_(2),a_(3)],[a_(3)a_(7),a_(3),a_(4)]| is equal to

If a_(i) , i=1,2,…..,9 are perfect odd squares, then |{:(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9)):}| is always a multiple of

if a_(1),a_(2),a+_(3)……,a_(12) are in A.P and Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(3)= |{:(a_(2)b_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(3)a_(12),,a_(4),,a_(5)):}| then Delta_(2):Delta_(2)= "_____"

For the A.P., a_(1),a_(2),a_(3) ,…………… if (a_(4))/(a_(7))=2/3 , find (a_(6))/(a_(8))

If a_(1), a_(2), a_(3), a_(4), a_(5) are consecutive terms of an arithmetic progression with common difference 3, then the value of |(a_(3)^(2),a_(2),a_(1)),(a_(4)^(2),a_(3),a_(2)),(a_(5)^(2),a_(4),a_(3))| is

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. The value of theta , lying between theta =0 and theta=(pi)/(2) and ...

    Text Solution

    |

  2. Solve |{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,...

    Text Solution

    |

  3. If a(r)="cos"(2rpi)/9+i "sin"(2rpi)/9 then value of the determinant ...

    Text Solution

    |

  4. If a!=p,b!=q,c!=r and the system of equations px+by+cz=0 ax+qy+cz=...

    Text Solution

    |

  5. For a fixed positive integer n if D= |(n!, (n+1)!, (n+2)!),((n+1)!, (n...

    Text Solution

    |

  6. If a, b, c are in A.P., and Delta=|[x+2,x+7,a],[x+5,x+11,b],[x+8,x+15,...

    Text Solution

    |

  7. If Delta=|(1+y,1-y,1-y),(1-y,1+y,1-y),(1-y,1-y,1+y)|=0, then value of ...

    Text Solution

    |

  8. The determinant Delta=|(al+a'l',am+a'm',an+a'n'),(bl+b'l',bm+b'm',bn...

    Text Solution

    |

  9. If a =i, b = omega and C= omega^2, then the value of determinant |(a...

    Text Solution

    |

  10. If Delta=|(1,1,1),(""^(m)C(1),""^(m+3)C(1),""^(m+6)C(1)),(""^(m)C(2),"...

    Text Solution

    |

  11. Suppose a,b,c,x,y epsilon R. Let Delta=|(1,2+ax,3+ay),(1,2+bx,3+by),...

    Text Solution

    |

  12. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  13. Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim(xto0)(f(x)...

    Text Solution

    |

  14. If omega is a complex cube root of unity, then value of Delta=|(a(1)+...

    Text Solution

    |

  15. If p q r!=0 and the system of equation (p+a)x+b y-c z=0 a x+(q+b)y+c ...

    Text Solution

    |

  16. The system of equations ax+by+(a alpha+ b)z=0 bx+cy+(b alpha+c)z=0...

    Text Solution

    |

  17. If the system of equations ax+ay-z=0 bx-y+bz=0 -x+cy+cz=0 (whe...

    Text Solution

    |

  18. The values of lamda for which the system of equations (lamda+5)x+(la...

    Text Solution

    |

  19. If a+b+c!=0, the system of equations (b+c)(y+z)-ax=b-c, (c+a)(z+x)-by=...

    Text Solution

    |

  20. If a,b, c in R and a + b + c =0 and th esystem of equations ax + by + ...

    Text Solution

    |