Home
Class 12
MATHS
If Delta=|(1,1,1),(""^(m)C(1),""^(m+3)C(...

If `Delta=|(1,1,1),(""^(m)C_(1),""^(m+3)C_(1),""^(m+6)C_(1)),(""^(m)C_(2),""^(m+3)C_(2),""^(m+6)C_(2))|=2^(alpha)3^(beta),5^(gamma)`, then `alpha+beta+gamma` is equal

A

3

B

5

C

7

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem step-by-step, we will evaluate the determinant \( \Delta \) defined as: \[ \Delta = \begin{vmatrix} 1 & \binom{m}{1} & \binom{m+3}{1} \\ \binom{m}{2} & \binom{m+3}{2} & \binom{m+6}{2} \end{vmatrix} \] ### Step 1: Calculate the binomial coefficients Using the formula for binomial coefficients, we have: - \( \binom{m}{1} = m \) - \( \binom{m+3}{1} = m + 3 \) - \( \binom{m+6}{1} = m + 6 \) - \( \binom{m}{2} = \frac{m(m-1)}{2} \) - \( \binom{m+3}{2} = \frac{(m+3)(m+2)}{2} \) - \( \binom{m+6}{2} = \frac{(m+6)(m+5)}{2} \) Substituting these values into the determinant, we get: \[ \Delta = \begin{vmatrix} 1 & m & m + 3 \\ \frac{m(m-1)}{2} & \frac{(m+3)(m+2)}{2} & \frac{(m+6)(m+5)}{2} \end{vmatrix} \] ### Step 2: Factor out common terms We can factor out \( \frac{1}{2} \) from the second row: \[ \Delta = \frac{1}{2} \begin{vmatrix} 1 & m & m + 3 \\ m(m-1) & (m+3)(m+2) & (m+6)(m+5) \end{vmatrix} \] ### Step 3: Simplify the determinant Next, we will perform column operations to simplify the determinant. We can replace the second and third columns with the difference of those columns and the first column: - Replace column 2 with column 2 - column 1 - Replace column 3 with column 3 - column 1 This gives us: \[ \Delta = \frac{1}{2} \begin{vmatrix} 1 & 0 & 0 \\ m(m-1) & (m+3)(m+2) - m(m-1) & (m+6)(m+5) - m(m-1) \end{vmatrix} \] Calculating the new entries in the second row: 1. For the second column: \[ (m+3)(m+2) - m(m-1) = m^2 + 5m + 6 - (m^2 - m) = 6m + 6 = 6(m + 1) \] 2. For the third column: \[ (m+6)(m+5) - m(m-1) = m^2 + 11m + 30 - (m^2 - m) = 12m + 30 \] Thus, the determinant simplifies to: \[ \Delta = \frac{1}{2} \begin{vmatrix} 1 & 0 & 0 \\ m(m-1) & 6(m + 1) & 12m + 30 \end{vmatrix} \] ### Step 4: Calculate the determinant The determinant can now be calculated as: \[ \Delta = \frac{1}{2} \cdot 1 \cdot \left( m(m-1) \cdot 12(m + 1) - 0 \right) = \frac{1}{2} \cdot 12m(m-1)(m+1) = 6m(m^2 - 1) \] ### Step 5: Factor and express in terms of powers of 2, 3, and 5 Now, we need to express \( \Delta \) in the form \( 2^\alpha 3^\beta 5^\gamma \): \[ \Delta = 6m(m^2 - 1) = 6m(m-1)(m+1) = 2 \cdot 3 \cdot m(m-1)(m+1) \] ### Step 6: Identify \( \alpha, \beta, \gamma \) From \( 6 = 2^1 \cdot 3^1 \): - \( \alpha = 1 \) (from the factor of 2) - \( \beta = 1 \) (from the factor of 3) - \( \gamma = 0 \) (no factor of 5) Thus, we have: \[ \alpha + \beta + \gamma = 1 + 1 + 0 = 2 \] ### Final Answer The value of \( \alpha + \beta + \gamma \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If |[1,1,1],[^mC_1,^(m+3)C_1,^(m+6)C_1],[^mC_2,^(m+3)C_2,^(m+6)C_2]|=2^alpha3^beta5^gamma then alpha+beta+gamma is equal to

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

Evaluate |{:(""^(m)C_(1),""^(m)C_(2),""^(m)C_(3)),(""^(n)C_(1),""^(n)C_(2),""^(n)C_(3)),(""^(p)C_(1),""^(p)C_(2), ""^(p)C_(3)):}|

If m in N and m>=2 prove that: |111^(m)C_(1)^(m+1)C_(1)^(m+2)C_(1)^(m)C_(2)^(m+1)C_(2)^(m+2)C_(2)|=1

If tan alpha=(m)/(m+1) and tan beta=(1)/(2m+1) then alpha+beta is equal to

|{:(1,1,1),(m_(C1),m+1_(C1),m+2_(C1)),(m_(C2),m+1_(C2),m+2_(C2)):}|=

Prove that mC_(1)^(n)C_(m)-^(m)C_(2)^(2n)C_(m)+^(m)C_(3)^(3n)C_(m)-...=(-1)^(m-1)n^(m)

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If a!=p,b!=q,c!=r and the system of equations px+by+cz=0 ax+qy+cz=...

    Text Solution

    |

  2. For a fixed positive integer n if D= |(n!, (n+1)!, (n+2)!),((n+1)!, (n...

    Text Solution

    |

  3. If a, b, c are in A.P., and Delta=|[x+2,x+7,a],[x+5,x+11,b],[x+8,x+15,...

    Text Solution

    |

  4. If Delta=|(1+y,1-y,1-y),(1-y,1+y,1-y),(1-y,1-y,1+y)|=0, then value of ...

    Text Solution

    |

  5. The determinant Delta=|(al+a'l',am+a'm',an+a'n'),(bl+b'l',bm+b'm',bn...

    Text Solution

    |

  6. If a =i, b = omega and C= omega^2, then the value of determinant |(a...

    Text Solution

    |

  7. If Delta=|(1,1,1),(""^(m)C(1),""^(m+3)C(1),""^(m+6)C(1)),(""^(m)C(2),"...

    Text Solution

    |

  8. Suppose a,b,c,x,y epsilon R. Let Delta=|(1,2+ax,3+ay),(1,2+bx,3+by),...

    Text Solution

    |

  9. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  10. Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim(xto0)(f(x)...

    Text Solution

    |

  11. If omega is a complex cube root of unity, then value of Delta=|(a(1)+...

    Text Solution

    |

  12. If p q r!=0 and the system of equation (p+a)x+b y-c z=0 a x+(q+b)y+c ...

    Text Solution

    |

  13. The system of equations ax+by+(a alpha+ b)z=0 bx+cy+(b alpha+c)z=0...

    Text Solution

    |

  14. If the system of equations ax+ay-z=0 bx-y+bz=0 -x+cy+cz=0 (whe...

    Text Solution

    |

  15. The values of lamda for which the system of equations (lamda+5)x+(la...

    Text Solution

    |

  16. If a+b+c!=0, the system of equations (b+c)(y+z)-ax=b-c, (c+a)(z+x)-by=...

    Text Solution

    |

  17. If a,b, c in R and a + b + c =0 and th esystem of equations ax + by + ...

    Text Solution

    |

  18. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  19. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  20. Number of real values of lamda for which the system of equations (la...

    Text Solution

    |