Home
Class 12
MATHS
Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(t...

Let `f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)|` then `lim_(xto0)(f(x))/(x^(2))` is given by

A

0

B

`-1`

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the function \( f(x) = \left| \begin{array}{ccc} \cos x & x & 1 \\ 2\sin x & x^2 & 2x \\ \tan x & x & 1 \end{array} \right| \) as \( x \) approaches 0, divided by \( x^2 \). ### Step-by-Step Solution: 1. **Calculate the Determinant \( f(x) \)**: We need to compute the determinant of the given matrix: \[ f(x) = \left| \begin{array}{ccc} \cos x & x & 1 \\ 2\sin x & x^2 & 2x \\ \tan x & x & 1 \end{array} \right| \] 2. **Use the Determinant Formula**: The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: - \( a = \cos x, b = x, c = 1 \) - \( d = 2\sin x, e = x^2, f = 2x \) - \( g = \tan x, h = x, i = 1 \) Thus, we can expand the determinant. 3. **Expand the Determinant**: \[ f(x) = \cos x \left( x^2 \cdot 1 - 2x \cdot x \right) - x \left( 2\sin x \cdot 1 - 2x \cdot \tan x \right) + 1 \left( 2\sin x \cdot x - x^2 \cdot \tan x \right) \] Simplifying this gives: \[ f(x) = \cos x (x^2 - 2x^2) - x (2\sin x - 2x \tan x) + (2x \sin x - x^2 \tan x) \] \[ = -x^2 \cos x - x (2\sin x - 2x \tan x) + (2x \sin x - x^2 \tan x) \] 4. **Combine Like Terms**: After simplifying, we can combine terms: \[ = -x^2 \cos x + 2x \sin x - 2x^2 \tan x \] 5. **Evaluate the Limit**: Now, we need to evaluate: \[ \lim_{x \to 0} \frac{f(x)}{x^2} \] Substituting \( f(x) \): \[ = \lim_{x \to 0} \frac{-x^2 \cos x + 2x \sin x - 2x^2 \tan x}{x^2} \] This simplifies to: \[ = \lim_{x \to 0} \left(-\cos x + \frac{2\sin x}{x} - 2\tan x\right) \] 6. **Apply Limits**: As \( x \to 0 \): - \( \cos x \to 1 \) - \( \frac{\sin x}{x} \to 1 \) - \( \tan x \to 0 \) Thus: \[ = -1 + 2(1) - 0 = -1 + 2 = 1 \] 7. **Final Result**: Therefore, the limit is: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = -1 \] ### Final Answer: The limit is \( -1 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

If f(x)=|{:(sin x,cosx,tanx),(x^3,x^2,x),(2x,1,1):}| then lim_(xrarr0)(f(x))/(x^2) is

Let f(x)=|{:(cosx,x,1),(2 sinx,x^2,2x),(tanx,x,1):}| Find underset(xto0)"Lt"underset(x)(f'(x))

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)

If f(x)=|{:(x,sinx,cosx),(x^2,tanx,x^3),(2x,sin2x,5x):}| then lim_(x to 0)(f'(x))/x is equal to

If f(x) = |(sin x,cos x,tan x),(x^(3),x^(2),x),(2x,1,1)|, " then " lim_(x rarr 0) (f (x))/(x^(2)) , is

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If a!=p,b!=q,c!=r and the system of equations px+by+cz=0 ax+qy+cz=...

    Text Solution

    |

  2. For a fixed positive integer n if D= |(n!, (n+1)!, (n+2)!),((n+1)!, (n...

    Text Solution

    |

  3. If a, b, c are in A.P., and Delta=|[x+2,x+7,a],[x+5,x+11,b],[x+8,x+15,...

    Text Solution

    |

  4. If Delta=|(1+y,1-y,1-y),(1-y,1+y,1-y),(1-y,1-y,1+y)|=0, then value of ...

    Text Solution

    |

  5. The determinant Delta=|(al+a'l',am+a'm',an+a'n'),(bl+b'l',bm+b'm',bn...

    Text Solution

    |

  6. If a =i, b = omega and C= omega^2, then the value of determinant |(a...

    Text Solution

    |

  7. If Delta=|(1,1,1),(""^(m)C(1),""^(m+3)C(1),""^(m+6)C(1)),(""^(m)C(2),"...

    Text Solution

    |

  8. Suppose a,b,c,x,y epsilon R. Let Delta=|(1,2+ax,3+ay),(1,2+bx,3+by),...

    Text Solution

    |

  9. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  10. Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim(xto0)(f(x)...

    Text Solution

    |

  11. If omega is a complex cube root of unity, then value of Delta=|(a(1)+...

    Text Solution

    |

  12. If p q r!=0 and the system of equation (p+a)x+b y-c z=0 a x+(q+b)y+c ...

    Text Solution

    |

  13. The system of equations ax+by+(a alpha+ b)z=0 bx+cy+(b alpha+c)z=0...

    Text Solution

    |

  14. If the system of equations ax+ay-z=0 bx-y+bz=0 -x+cy+cz=0 (whe...

    Text Solution

    |

  15. The values of lamda for which the system of equations (lamda+5)x+(la...

    Text Solution

    |

  16. If a+b+c!=0, the system of equations (b+c)(y+z)-ax=b-c, (c+a)(z+x)-by=...

    Text Solution

    |

  17. If a,b, c in R and a + b + c =0 and th esystem of equations ax + by + ...

    Text Solution

    |

  18. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  19. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  20. Number of real values of lamda for which the system of equations (la...

    Text Solution

    |