Home
Class 12
MATHS
The system of equations ax+by+(a alpha...

The system of equations
`ax+by+(a alpha+ b)z=0`
`bx+cy+(b alpha+c)z=0`
`(a alpha+b)x+(balpha+c)y=0`
has a non zero solutions if a,b,c are in

A

A.P.

B

G.P.

C

H.P.

D

A.G.P

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations for non-zero solutions, we need to analyze the determinant of the coefficient matrix. The equations are: 1. \( ax + by + (a\alpha + b)z = 0 \) 2. \( bx + cy + (b\alpha + c)z = 0 \) 3. \( (a\alpha + b)x + (b\alpha + c)y = 0 \) ### Step 1: Write the Coefficient Matrix The coefficient matrix \( A \) for the system of equations can be represented as: \[ A = \begin{bmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{bmatrix} \] ### Step 2: Calculate the Determinant To find the conditions for non-zero solutions, we need to set the determinant of the coefficient matrix to zero: \[ \text{det}(A) = 0 \] ### Step 3: Expand the Determinant Using the determinant formula for a 3x3 matrix, we can expand it as follows: \[ \text{det}(A) = a \begin{vmatrix} c & b\alpha + c \\ b\alpha + c & 0 \end{vmatrix} - b \begin{vmatrix} b & b\alpha + c \\ a\alpha + b & 0 \end{vmatrix} + (a\alpha + b) \begin{vmatrix} b & c \\ a\alpha + b & b\alpha + c \end{vmatrix} \] ### Step 4: Calculate Each Minor Calculating the minors: 1. For the first minor: \[ \begin{vmatrix} c & b\alpha + c \\ b\alpha + c & 0 \end{vmatrix} = c \cdot 0 - (b\alpha + c)(b\alpha + c) = - (b\alpha + c)^2 \] 2. For the second minor: \[ \begin{vmatrix} b & b\alpha + c \\ a\alpha + b & 0 \end{vmatrix} = b \cdot 0 - (b\alpha + c)(a\alpha + b) = - (b\alpha + c)(a\alpha + b) \] 3. For the third minor: \[ \begin{vmatrix} b & c \\ a\alpha + b & b\alpha + c \end{vmatrix} = b(b\alpha + c) - c(a\alpha + b) = b^2\alpha + bc - ac - bc = b^2\alpha - ac \] ### Step 5: Substitute Minors Back into the Determinant Now substituting these back into the determinant equation: \[ \text{det}(A) = a \cdot (-(b\alpha + c)^2) - b \cdot (-(b\alpha + c)(a\alpha + b)) + (a\alpha + b)(b^2\alpha - ac) \] ### Step 6: Set the Determinant to Zero Setting the determinant to zero gives us: \[ -a(b\alpha + c)^2 + b(b\alpha + c)(a\alpha + b) + (a\alpha + b)(b^2\alpha - ac) = 0 \] ### Step 7: Factor the Equation This can be factored or simplified to find conditions on \( a, b, c \). The resulting conditions will lead us to determine if \( a, b, c \) are in Arithmetic Progression (AP), Geometric Progression (GP), Harmonic Progression (HP), or Arithmetic-Geometric Progression (AGP). ### Conclusion After simplification, we find that the condition for non-zero solutions leads to: - \( a\alpha^2 + 2b\alpha + c = 0 \) or \( ac - b^2 = 0 \) The second condition \( ac - b^2 = 0 \) indicates that \( a, b, c \) are in GP. Thus, the answer is that \( a, b, c \) are in **Geometric Progression (GP)**. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Given that a alpha^(2)+2b alpha+c!=0 and that the system of equations (a alpha+b)x+alpha y+bz=0,(b alpha+c)x+by+cz=0,(a alpha+b)y+(b alpha+c)z=0 has a non trivial solution,then a ,b,c are in

If a,b,c are non-zero,then the system of equations (alpha+a)x+alpha y+alpha z=0,alpha x+(alpha+b)y+alpha z=0,alpha x+alpha y+(alpha+c)z=0 has a non-trivial solution if alpha^(-1)=(A)-(a^(-1)+b^(-1)+c^(-1))(B)a+b+c (C) alpha+a+b+c=1 (D) none of these

Let alpha, beta and gamma are the roots of equation x^(3) + ax^(2) + bx + c = 0 (a, b, c in R, a != 0) . If system of equations alphax + betay + gammaz = 0 betax + gammay + alphaz = 0 gammax + alphay + betaz = 0 has non trivial solution then the value of ((a^2)/(b)) is :

The value of alpha for which the system of linear equations: x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,-x+(sin alpha)y+(-cos alpha)z=0 has a non - trivial solution could be

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

If the system of linear equations ax +by+ cz =0 cx + cy + bz =0 bx + cy +az =0 where a,b,c, in R are non-zero and distinct, has a non-zero solution, then:

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If a!=p,b!=q,c!=r and the system of equations px+by+cz=0 ax+qy+cz=...

    Text Solution

    |

  2. For a fixed positive integer n if D= |(n!, (n+1)!, (n+2)!),((n+1)!, (n...

    Text Solution

    |

  3. If a, b, c are in A.P., and Delta=|[x+2,x+7,a],[x+5,x+11,b],[x+8,x+15,...

    Text Solution

    |

  4. If Delta=|(1+y,1-y,1-y),(1-y,1+y,1-y),(1-y,1-y,1+y)|=0, then value of ...

    Text Solution

    |

  5. The determinant Delta=|(al+a'l',am+a'm',an+a'n'),(bl+b'l',bm+b'm',bn...

    Text Solution

    |

  6. If a =i, b = omega and C= omega^2, then the value of determinant |(a...

    Text Solution

    |

  7. If Delta=|(1,1,1),(""^(m)C(1),""^(m+3)C(1),""^(m+6)C(1)),(""^(m)C(2),"...

    Text Solution

    |

  8. Suppose a,b,c,x,y epsilon R. Let Delta=|(1,2+ax,3+ay),(1,2+bx,3+by),...

    Text Solution

    |

  9. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  10. Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim(xto0)(f(x)...

    Text Solution

    |

  11. If omega is a complex cube root of unity, then value of Delta=|(a(1)+...

    Text Solution

    |

  12. If p q r!=0 and the system of equation (p+a)x+b y-c z=0 a x+(q+b)y+c ...

    Text Solution

    |

  13. The system of equations ax+by+(a alpha+ b)z=0 bx+cy+(b alpha+c)z=0...

    Text Solution

    |

  14. If the system of equations ax+ay-z=0 bx-y+bz=0 -x+cy+cz=0 (whe...

    Text Solution

    |

  15. The values of lamda for which the system of equations (lamda+5)x+(la...

    Text Solution

    |

  16. If a+b+c!=0, the system of equations (b+c)(y+z)-ax=b-c, (c+a)(z+x)-by=...

    Text Solution

    |

  17. If a,b, c in R and a + b + c =0 and th esystem of equations ax + by + ...

    Text Solution

    |

  18. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  19. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  20. Number of real values of lamda for which the system of equations (la...

    Text Solution

    |