Home
Class 12
MATHS
If a^(2)+b^(2)+c^(2)=1 then |(a^(2)+(b...

If `a^(2)+b^(2)+c^(2)=1` then
`|(a^(2)+(b^(2)+c^(2))costheta, ab(1-cos theta),ac(1-cos theta)),(ba(1-cos theta),b^(2)+(c^(2)+a^(2))cos theta,bc(1-cos theta)),(ca(1-cos theta),cb(1-cos theta),c^(2)+(a^(2)+b^(2))costheta)|` equals

A

`cos^(2)theta`

B

`0`

C

`1`

D

`sin^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem step by step, we will follow the structure of the determinant and apply the necessary algebraic manipulations. ### Given: We need to evaluate the determinant: \[ D = \begin{vmatrix} a^2 + (b^2 + c^2) \cos \theta & ab(1 - \cos \theta) & ac(1 - \cos \theta) \\ ba(1 - \cos \theta) & b^2 + (c^2 + a^2) \cos \theta & bc(1 - \cos \theta) \\ ca(1 - \cos \theta) & cb(1 - \cos \theta) & c^2 + (a^2 + b^2) \cos \theta \end{vmatrix} \] ### Step 1: Simplify the determinant We know that \( a^2 + b^2 + c^2 = 1 \). Thus, we can rewrite the elements of the determinant: - The first element in the first row becomes \( a^2 + (1 - a^2) \cos \theta = a^2 + \cos \theta - a^2 \cos \theta = a^2(1 - \cos \theta) + \cos \theta \). - Similarly, we can simplify the other elements. ### Step 2: Factor out common terms We can factor out \( a \), \( b \), and \( c \) from the respective rows: \[ D = abc \begin{vmatrix} \frac{a^2(1 - \cos \theta) + \cos \theta}{a} & \frac{ab(1 - \cos \theta)}{b} & \frac{ac(1 - \cos \theta)}{c} \\ \frac{ba(1 - \cos \theta)}{a} & \frac{b^2(1 - \cos \theta) + \cos \theta}{b} & \frac{bc(1 - \cos \theta)}{c} \\ \frac{ca(1 - \cos \theta)}{a} & \frac{cb(1 - \cos \theta)}{b} & \frac{c^2(1 - \cos \theta) + \cos \theta}{c} \end{vmatrix} \] ### Step 3: Further simplify the determinant Now, we can simplify the determinant further by substituting \( a^2 + b^2 + c^2 = 1 \): \[ D = abc \begin{vmatrix} \cos \theta & ab(1 - \cos \theta) & ac(1 - \cos \theta) \\ ba(1 - \cos \theta) & \cos \theta & bc(1 - \cos \theta) \\ ca(1 - \cos \theta) & cb(1 - \cos \theta) & \cos \theta \end{vmatrix} \] ### Step 4: Apply row operations We can perform row operations to simplify the determinant. For example, we can replace the second and third rows by subtracting the first row from them: \[ D = abc \begin{vmatrix} \cos \theta & ab(1 - \cos \theta) & ac(1 - \cos \theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} \] ### Step 5: Evaluate the determinant Since the second and third rows are now zero, the determinant evaluates to zero: \[ D = 0 \] ### Final Result: Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

int(costheta-cos2theta)/(1-cos theta)d theta=

Prove that ((1+cos theta)/(cos theta))((1-cos theta)/(cos theta))cosec^(2)theta=sec^(2)theta

The value (2cos theta-1)(2cos2 theta-1)(2cos4 theta-1)(2cos8 theta-1)=

(1)/(1-cos theta)-(1)/(1+cos theta)=(2cos theta)/(sin^(2)theta)=2cot theta xx csc

1+cos theta=2cos^(2)theta

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta

x=a sin2 theta(1+cos2 theta), y=b cos2 theta(1-cos2 theta) then (dy)/(dx)=

(cos^(2)theta(1-cos theta))/(sin^(2)theta(1-sin theta))=(1+sin theta)/(1+cos theta)

Prove that: (2cos2 theta+1)/(2cos theta+1)=(2cos theta-1)(2cos2 theta-1)(2cos2^(2)theta-1)...(2cos2^(n-1)theta-1)