Home
Class 12
MATHS
Suppose alpha, beta, gamma, theta epsilo...

Suppose `alpha, beta, gamma, theta epsilon R` and
`A(alpha, beta,gamma, theta)=|(cos (alpha + theta), sin (alpha+theta),1),(cos(beta+theta),sin(beta+theta),1),(cos (gamma+theta),sin(gamma+theta),1)|`
Numerical value of `A(-(pi)/2,0,(pi)/2,(2pi)/13)` is

A

0

B

`-1`

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerical value of \( A(-\frac{\pi}{2}, 0, \frac{\pi}{2}, \frac{2\pi}{13}) \), we start with the determinant defined in the question: \[ A(\alpha, \beta, \gamma, \theta) = \begin{vmatrix} \cos(\alpha + \theta) & \sin(\alpha + \theta) & 1 \\ \cos(\beta + \theta) & \sin(\beta + \theta) & 1 \\ \cos(\gamma + \theta) & \sin(\gamma + \theta) & 1 \end{vmatrix} \] ### Step 1: Substitute the values of \(\alpha\), \(\beta\), \(\gamma\), and \(\theta\) We need to substitute \(\alpha = -\frac{\pi}{2}\), \(\beta = 0\), \(\gamma = \frac{\pi}{2}\), and \(\theta = \frac{2\pi}{13}\): \[ A\left(-\frac{\pi}{2}, 0, \frac{\pi}{2}, \frac{2\pi}{13}\right) = \begin{vmatrix} \cos\left(-\frac{\pi}{2} + \frac{2\pi}{13}\right) & \sin\left(-\frac{\pi}{2} + \frac{2\pi}{13}\right) & 1 \\ \cos\left(0 + \frac{2\pi}{13}\right) & \sin\left(0 + \frac{2\pi}{13}\right) & 1 \\ \cos\left(\frac{\pi}{2} + \frac{2\pi}{13}\right) & \sin\left(\frac{\pi}{2} + \frac{2\pi}{13}\right) & 1 \end{vmatrix} \] ### Step 2: Simplify the trigonometric functions Now we calculate the trigonometric values: 1. For \(\alpha = -\frac{\pi}{2}\): - \(\cos\left(-\frac{\pi}{2} + \frac{2\pi}{13}\right) = \sin\left(\frac{2\pi}{13}\right)\) - \(\sin\left(-\frac{\pi}{2} + \frac{2\pi}{13}\right) = -\cos\left(\frac{2\pi}{13}\right)\) 2. For \(\beta = 0\): - \(\cos\left(0 + \frac{2\pi}{13}\right) = \cos\left(\frac{2\pi}{13}\right)\) - \(\sin\left(0 + \frac{2\pi}{13}\right) = \sin\left(\frac{2\pi}{13}\right)\) 3. For \(\gamma = \frac{\pi}{2}\): - \(\cos\left(\frac{\pi}{2} + \frac{2\pi}{13}\right) = -\sin\left(\frac{2\pi}{13}\right)\) - \(\sin\left(\frac{\pi}{2} + \frac{2\pi}{13}\right) = \cos\left(\frac{2\pi}{13}\right)\) Thus, the determinant becomes: \[ A\left(-\frac{\pi}{2}, 0, \frac{\pi}{2}, \frac{2\pi}{13}\right) = \begin{vmatrix} \sin\left(\frac{2\pi}{13}\right) & -\cos\left(\frac{2\pi}{13}\right) & 1 \\ \cos\left(\frac{2\pi}{13}\right) & \sin\left(\frac{2\pi}{13}\right) & 1 \\ -\sin\left(\frac{2\pi}{13}\right) & \cos\left(\frac{2\pi}{13}\right) & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant Now we can calculate the determinant using the formula for a \(3 \times 3\) matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] Substituting the values: \[ \text{Det} = \sin\left(\frac{2\pi}{13}\right) \left(\sin\left(\frac{2\pi}{13}\right) \cdot 1 - \cos\left(\frac{2\pi}{13}\right) \cdot 1\right) - (-\cos\left(\frac{2\pi}{13}\right)) \left(\cos\left(\frac{2\pi}{13}\right) \cdot 1 - (-\sin\left(\frac{2\pi}{13}\right) \cdot 1)\right) + 1 \left(\cos\left(\frac{2\pi}{13}\right) \cdot \cos\left(\frac{2\pi}{13}\right) - (-\sin\left(\frac{2\pi}{13}\right) \cdot \sin\left(\frac{2\pi}{13}\right))\right) \] ### Step 4: Simplify the expression After simplifying the determinant, we find: \[ = \sin^2\left(\frac{2\pi}{13}\right) + \cos^2\left(\frac{2\pi}{13}\right) = 1 \] ### Final Result Thus, the numerical value of \( A\left(-\frac{\pi}{2}, 0, \frac{\pi}{2}, \frac{2\pi}{13}\right) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If (alpha+beta+gamma+delta)=pi then sum cos alpha cos beta-sum sin alpha sin beta=

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

If A = |(sin (theta + alpha),cos (theta + alpha),1),(sin (theta + beta),cos (theta + beta),1),(sin (theta + gamma),cos (theta + gamma),1)| , then

Ifcos alpha+cos beta=a,sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

If cos alpha+cos beta=a sin alpha+sin beta=balpha-beta=2 theta then (cos3 theta)/(cos theta)=

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If alpha,beta,gamma,in(0,(pi)/(2)), then prove that (si(alpha+beta+gamma))/(sin alpha+sin beta+sin gamma)<1

If alpha+beta+gamma=2 theta, then cos theta+cos(theta-alpha)+cos(theta-beta)+cos(theta-gamma)

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of