Home
Class 12
MATHS
Let f(x)=|(2cosx,1,0),(1,2cosx,1),(0,1,2...

Let `f(x)=|(2cosx,1,0),(1,2cosx,1),(0,1,2cosx)|` then

A

`f((pi)/3)=1`

B

`f'((pi)/3)=-sqrt(3)`

C

`f((pi)/2)=-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix given by the function \( f(x) = \left| \begin{array}{ccc} 2\cos x & 1 & 0 \\ 1 & 2\cos x & 1 \\ 0 & 1 & 2\cos x \end{array} \right| \). ### Step 1: Calculate the Determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ A = \begin{pmatrix} 2\cos x & 1 & 0 \\ 1 & 2\cos x & 1 \\ 0 & 1 & 2\cos x \end{pmatrix} \] Assigning the elements: - \( a = 2\cos x \), \( b = 1 \), \( c = 0 \) - \( d = 1 \), \( e = 2\cos x \), \( f = 1 \) - \( g = 0 \), \( h = 1 \), \( i = 2\cos x \) Now substituting into the determinant formula: \[ \text{det}(A) = 2\cos x \left( (2\cos x)(2\cos x) - (1)(1) \right) - 1 \left( (1)(2\cos x) - (1)(0) \right) + 0 \] Calculating the terms: 1. \( (2\cos x)(2\cos x) - 1 = 4\cos^2 x - 1 \) 2. \( 1(2\cos x) - 0 = 2\cos x \) Putting it all together: \[ \text{det}(A) = 2\cos x (4\cos^2 x - 1) - 2\cos x \] This simplifies to: \[ \text{det}(A) = 8\cos^3 x - 2\cos x - 2\cos x = 8\cos^3 x - 4\cos x \] Thus, we have: \[ f(x) = 8\cos^3 x - 4\cos x \] ### Step 2: Evaluate \( f\left(\frac{\pi}{2}\right) \) Now we evaluate \( f\left(\frac{\pi}{2}\right) \): \[ \cos\left(\frac{\pi}{2}\right) = 0 \] Substituting into \( f(x) \): \[ f\left(\frac{\pi}{2}\right) = 8(0)^3 - 4(0) = 0 \] ### Step 3: Evaluate \( f\left(\frac{\pi}{3}\right) \) Next, we evaluate \( f\left(\frac{\pi}{3}\right) \): \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Substituting into \( f(x) \): \[ f\left(\frac{\pi}{3}\right) = 8\left(\frac{1}{2}\right)^3 - 4\left(\frac{1}{2}\right) = 8\left(\frac{1}{8}\right) - 2 = 1 - 2 = -1 \] ### Step 4: Find the Derivative \( f'(x) \) To find \( f'(x) \), we differentiate \( f(x) = 8\cos^3 x - 4\cos x \): Using the chain rule: \[ f'(x) = 24\cos^2 x (-\sin x) + 4\sin x = -24\cos^2 x \sin x + 4\sin x \] Factoring out \( \sin x \): \[ f'(x) = \sin x (-24\cos^2 x + 4) \] ### Step 5: Evaluate \( f'\left(\frac{\pi}{3}\right) \) Now we evaluate \( f'\left(\frac{\pi}{3}\right) \): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Substituting into \( f'(x) \): \[ f'\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \left(-24\left(\frac{1}{2}\right)^2 + 4\right) = \frac{\sqrt{3}}{2} \left(-24 \cdot \frac{1}{4} + 4\right) \] This simplifies to: \[ = \frac{\sqrt{3}}{2} \left(-6 + 4\right) = \frac{\sqrt{3}}{2} (-2) = -\sqrt{3} \] ### Conclusion Thus, we have: - \( f\left(\frac{\pi}{2}\right) = 0 \) - \( f\left(\frac{\pi}{3}\right) = -1 \) - \( f'\left(\frac{\pi}{3}\right) = -\sqrt{3} \)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(pi//2)underset(0)intf(x)dx| is equal to

if f(x)=|[2cosx,1,0],[x-pi/2,2cosx,1],[0,1,2cosx]| then (df)/(dx) at x=pi/2 is

if f(x)=|[cosx,1,0],[1,2cosx,1],[0,1,2cosx]| then int_0^(pi/2) f(x)dx is equal to (A) 1/4 (B) -1/3 (C) 1/2 (D) 1

if f(x)=[[cosx,1,0],[1,2cosx,1],[0,1,2cosx]], then int_0^(pi/2) f(x)dx = (i)-1/3 (ii)1/4 (iii)1/2 (iv)none of these

Let f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)], then (A) (f(x))^2=-I (B) f(x+y)=f(x),f(y) (C) f(x)^-1=f(-x) (D) f(x)^-1=f(x)

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by

f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] Statement 1: f(x) is inverse of f(-x) Statement 2: f(x).f(y) = f(x+y)