Home
Class 12
MATHS
If |(1,-3,4),(-5,x+2,2),(4,1,x-6)|=0 the...

If `|(1,-3,4),(-5,x+2,2),(4,1,x-6)|=0` then x equals

A

17,21

B

0,19

C

0,35

D

21,35

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \( |(1,-3,4),(-5,x+2,2),(4,1,x-6)|=0 \), we will proceed step by step. ### Step 1: Write down the determinant We start with the determinant of the matrix: \[ D = \begin{vmatrix} 1 & -3 & 4 \\ -5 & x+2 & 2 \\ 4 & 1 & x-6 \end{vmatrix} \] ### Step 2: Expand the determinant We will expand the determinant using the first row: \[ D = 1 \cdot \begin{vmatrix} x+2 & 2 \\ 1 & x-6 \end{vmatrix} - (-3) \cdot \begin{vmatrix} -5 & 2 \\ 4 & x-6 \end{vmatrix} + 4 \cdot \begin{vmatrix} -5 & x+2 \\ 4 & 1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now we calculate each of the 2x2 determinants: 1. For \( \begin{vmatrix} x+2 & 2 \\ 1 & x-6 \end{vmatrix} \): \[ = (x+2)(x-6) - (2)(1) = x^2 - 6x + 2x - 12 - 2 = x^2 - 4x - 14 \] 2. For \( \begin{vmatrix} -5 & 2 \\ 4 & x-6 \end{vmatrix} \): \[ = (-5)(x-6) - (2)(4) = -5x + 30 - 8 = -5x + 22 \] 3. For \( \begin{vmatrix} -5 & x+2 \\ 4 & 1 \end{vmatrix} \): \[ = (-5)(1) - (4)(x+2) = -5 - 4x - 8 = -4x - 13 \] ### Step 4: Substitute back into the determinant Substituting these back into our determinant expression: \[ D = 1(x^2 - 4x - 14) + 3(-5x + 22) + 4(-4x - 13) \] ### Step 5: Simplify the expression Now, simplify \( D \): \[ D = x^2 - 4x - 14 - 15x + 66 - 16x - 52 \] Combine like terms: \[ D = x^2 - 4x - 15x - 16x - 14 + 66 - 52 \] \[ = x^2 - 35x + 0 \] ### Step 6: Set the determinant to zero Since we want \( D = 0 \): \[ x^2 - 35x = 0 \] ### Step 7: Factor the equation Factoring gives: \[ x(x - 35) = 0 \] ### Step 8: Solve for \( x \) Setting each factor to zero gives: 1. \( x = 0 \) 2. \( x - 35 = 0 \) → \( x = 35 \) Thus, the possible values for \( x \) are \( 0 \) and \( 35 \). ### Final Result The values of \( x \) are \( 0 \) and \( 35 \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If |{:(x,3,6),(3,6,x),(6,x,3):}|=|{:(2,x,7),(x,7,2),(7,2,x):}|=|{:(4,5,x),(5,x,4),(x,4,5):}|=0 then x is equal to

" if " |{:(x,,3,,6),(3,,6,,x),(6,,x,,3):}|= |{:(2,,x,,7),(x,,7,,2),(7,,2,,x):}|=|{:(4,,5,,x),(5,,x,,4),(x,,4,,5):}|=0 then x is equal to

If |{:(x, 2, 3),(2,3,x),(3 , x,2):}| = |{:(1, x, 4),(x,4,1),(4 , 1,x):}| = |{:(0, 5, x),(5,x,0),(x, 0,5):}| = 0, then the value x equals (x in R )

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

The number of integers x satisfying -3x^4+det[(1,x,x^2),(1,x^2,x^4),(1,x^3,x^6)]=0 is equal to

" If the trace of the matrix: "A=[[-1,0,2,5],[3,x^(2)-2,4,1],[-1,-2,x-3,1],[2,0,4,x^(2)-6]]" is "0" then "x" is equal to "

If |[x,2],[3,4]|=|[2,x],[1,2]| then x equals to