Home
Class 12
MATHS
Suppose n epsilon N and for 1lerlen Le...

Suppose `n epsilon N` and for `1lerlen`
Let `Deltar=|(3r-2,2020,3n-1),(2r-1,2025,2n),(r,2029,n+1)|` then `1/(3n) sum_(r=1)^(n)(Delta_(r)+6)` is equal to __________

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta_r \) and then compute the expression given in the question. Let's break it down step by step. ### Step 1: Define the Determinant The determinant \( \Delta_r \) is given by: \[ \Delta_r = \begin{vmatrix} 3r - 2 & 2020 & 3n - 1 \\ 2r - 1 & 2025 & 2n \\ r & 2029 & n + 1 \end{vmatrix} \] ### Step 2: Calculate the Determinant We will calculate \( \Delta_r \) using the formula for the determinant of a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: - \( a = 3r - 2 \) - \( b = 2020 \) - \( c = 3n - 1 \) - \( d = 2r - 1 \) - \( e = 2025 \) - \( f = 2n \) - \( g = r \) - \( h = 2029 \) - \( i = n + 1 \) Calculating each part: 1. **Calculate \( ei - fh \)**: \[ ei = 2025(n + 1) = 2025n + 2025 \] \[ fh = 2n \cdot 2029 = 4058n \] \[ ei - fh = 2025n + 2025 - 4058n = -3033n + 2025 \] 2. **Calculate \( di - fg \)**: \[ di = (2r - 1)(n + 1) = 2rn + 2r - n - 1 \] \[ fg = 2n \cdot r = 2nr \] \[ di - fg = (2rn + 2r - n - 1) - 2nr = 2r - n - 1 \] 3. **Calculate \( dh - eg \)**: \[ dh = (2r - 1) \cdot 2029 = 4058r - 2029 \] \[ eg = 2025r \] \[ dh - eg = (4058r - 2029) - 2025r = 2033r - 2029 \] Now substituting back into the determinant formula: \[ \Delta_r = (3r - 2)(-3033n + 2025) - 2020(2r - n - 1) + (3n - 1)(2033r - 2029) \] ### Step 3: Simplify the Determinant We will expand and simplify the expression for \( \Delta_r \): 1. **Expand \( (3r - 2)(-3033n + 2025) \)**: \[ = -9099rn + 6075r + 6066n - 4050 \] 2. **Expand \( -2020(2r - n - 1) \)**: \[ = -4040r + 2020n + 2020 \] 3. **Expand \( (3n - 1)(2033r - 2029) \)**: \[ = 6099nr - 6087r - 2033n + 2029 \] Combining all these terms gives us \( \Delta_r \). ### Step 4: Compute the Final Expression Now we need to compute: \[ \frac{1}{3n} \sum_{r=1}^{n} (\Delta_r + 6) \] ### Step 5: Evaluate the Summation We will evaluate the summation \( \sum_{r=1}^{n} \Delta_r \) and add \( 6n \) to it. After simplification, we will divide by \( 3n \). ### Final Result After performing all calculations and simplifications, we find that: \[ \frac{1}{3n} \sum_{r=1}^{n} (\Delta_r + 6) = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n)(C(n,r))/(r+2) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^(n)r^(2)-sum_(m=1)^(n)sum_(r=1)^(m)r is equal to

sum_(r=1)^(n)r^(3)=f(n) then sum_(r=1)^(n)(2r-1)^(3) is equal to

If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is

Let sum_(r=1)^(n)(r^(4))=f(n). Then sum_(r=1)^(n)(2r-1)^(4) is equal to :

Let sum_(r=1)^(n)r^(4)=f(n)," then " sum_(r=1)^(n) (2r-1)^(4) is equal to

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to