Home
Class 12
MATHS
If |(1,2,3),(2,x,3),(3,4,5)|=0 then x=...

If `|(1,2,3),(2,x,3),(3,4,5)|=0` then x=________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \(|(1,2,3),(2,x,3),(3,4,5)|=0\), we will follow these steps: ### Step 1: Write the determinant We start with the determinant of the given matrix: \[ D = \begin{vmatrix} 1 & 2 & 3 \\ 2 & x & 3 \\ 3 & 4 & 5 \end{vmatrix} \] ### Step 2: Expand the determinant using the first row We will expand the determinant along the first row: \[ D = 1 \cdot \begin{vmatrix} x & 3 \\ 4 & 5 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} + 3 \cdot \begin{vmatrix} 2 & x \\ 3 & 4 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now we will calculate each of the 2x2 determinants: 1. For \(\begin{vmatrix} x & 3 \\ 4 & 5 \end{vmatrix}\): \[ = x \cdot 5 - 3 \cdot 4 = 5x - 12 \] 2. For \(\begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix}\): \[ = 2 \cdot 5 - 3 \cdot 3 = 10 - 9 = 1 \] 3. For \(\begin{vmatrix} 2 & x \\ 3 & 4 \end{vmatrix}\): \[ = 2 \cdot 4 - 3 \cdot x = 8 - 3x \] ### Step 4: Substitute back into the determinant expression Now substituting these back into our expression for \(D\): \[ D = 1(5x - 12) - 2(1) + 3(8 - 3x) \] ### Step 5: Simplify the expression Now we simplify: \[ D = 5x - 12 - 2 + 24 - 9x \] \[ D = 5x - 9x + 24 - 14 \] \[ D = -4x + 10 \] ### Step 6: Set the determinant equal to zero Since we need \(D = 0\): \[ -4x + 10 = 0 \] ### Step 7: Solve for \(x\) Now, we solve for \(x\): \[ -4x = -10 \] \[ x = \frac{10}{4} = \frac{5}{2} \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{\frac{5}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If |{:(x, 2, 3),(2,3,x),(3 , x,2):}| = |{:(1, x, 4),(x,4,1),(4 , 1,x):}| = |{:(0, 5, x),(5,x,0),(x, 0,5):}| = 0, then the value x equals (x in R )

The roots of the equations |{:(1+x,3,5),(2,2+x,5),(2,3,x+4):}| = 0 are

Consider the system of equations x_1+x_(2)^(2)+x_(3)^(3)+x_(4)^(4)+x_(5)^(5)=5 and x_1+2x_2+3x_3+4x_4+5x_5=15 where x_1,x_2,x_3,x_4,x_5 are positive real numbers. Then numbers of (x_1,x_2,x_3,x_4,x_5) is ___________.

If x!=0 and det[[1,x,2x1,3x,5x1,3,4]]=0, then x=

If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =3 then the value of |{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| is

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to