Home
Class 12
MATHS
Let omega!=1 be a cube root of unity, an...

Let `omega!=1` be a cube root of unity, and `Delta=|(2,2omega,-omega^(2)),(1,1,1),(1,-1,0)|` then `2cos (Delta)=`_____________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the determinant \( \Delta = |(2, 2\omega, -\omega^2), (1, 1, 1), (1, -1, 0)| \) where \( \omega \) is a cube root of unity and \( \omega \neq 1 \). ### Step 1: Write the determinant The determinant can be expressed as follows: \[ \Delta = \begin{vmatrix} 2 & 2\omega & -\omega^2 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} \] ### Step 2: Calculate the determinant using the formula We can calculate the determinant using the formula for a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] Here, \( a = 2, b = 2\omega, c = -\omega^2, d = 1, e = 1, f = 1, g = 1, h = -1, i = 0 \). Calculating the determinant: \[ \Delta = 2(1 \cdot 0 - 1 \cdot (-1)) - 2\omega(1 \cdot 0 - 1 \cdot 1) + (-\omega^2)(1 \cdot (-1) - 1 \cdot 1) \] ### Step 3: Simplify each term Calculating each term: 1. First term: \( 2(0 + 1) = 2 \) 2. Second term: \( -2\omega(0 - 1) = 2\omega \) 3. Third term: \( -\omega^2(-1 - 1) = 2\omega^2 \) Putting it all together: \[ \Delta = 2 + 2\omega + 2\omega^2 \] ### Step 4: Use properties of cube roots of unity Since \( \omega \) is a cube root of unity, we know that: \[ \omega^3 = 1 \quad \text{and} \quad 1 + \omega + \omega^2 = 0 \] Thus, \( \omega + \omega^2 = -1 \). Substituting this into our expression for \( \Delta \): \[ \Delta = 2 + 2(-1) = 2 - 2 = 0 \] ### Step 5: Calculate \( 2\cos(\Delta) \) Since \( \Delta = 0 \): \[ 2\cos(\Delta) = 2\cos(0) = 2 \cdot 1 = 2 \] ### Final Answer Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

Suppose omega!=1 is a sube root of unity, and Delta=|(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2))| then |Re(Delta)|= _____________

If 1,omega,omega^(2) are cube roots of unity then 1,omega,omega^(2) are in

If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1),(omega,omega^(2),1+x),(1,x+omega,omega^(2))|=0 then value of x is

Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,2),(2omega, omega-omega^(2)-1,2omega),(2omega^(2),2omega^(2),omega^(2)-1-omega)| then Delta equals

If omega is a cube root of unity and A=[(1,1,1),(1,omega,omega^(2)),(1,omega^(2),omega)] , then A^(-1) equal to