Home
Class 12
MATHS
If Delta(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c)...

If `Delta_(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|` and `Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)|` then `(Delta_(1))/(Delta_(2))=`_______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( \Delta_1 \) and \( \Delta_2 \) and then find the ratio \( \frac{\Delta_1}{\Delta_2} \). ### Step 1: Evaluate \( \Delta_1 \) Given: \[ \Delta_1 = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] We can use the property of determinants that allows us to split columns. We can rewrite the first column as: \[ \Delta_1 = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] This can be rewritten by splitting the first column into two parts: \[ = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] ### Step 2: Simplify \( \Delta_1 \) Next, we perform column operations. We can replace the third column with the third column minus the first column: \[ \Delta_1 = \begin{vmatrix} b+c & c+a & (a+b) - (b+c) \\ c+a & a+b & (b+c) - (c+a) \\ a+b & b+c & (c+a) - (a+b) \end{vmatrix} \] This simplifies to: \[ = \begin{vmatrix} b+c & c+a & a-c \\ c+a & a+b & b-a \\ a+b & b+c & c-b \end{vmatrix} \] ### Step 3: Further Simplification Next, we can perform additional column operations to simplify further. We can replace the second column with the second column minus the first column: \[ = \begin{vmatrix} b+c & (c+a)-(b+c) & a-c \\ c+a & (a+b)-(c+a) & b-a \\ a+b & (b+c)-(a+b) & c-b \end{vmatrix} \] This gives us: \[ = \begin{vmatrix} b+c & a-b & a-c \\ c+a & b-c & b-a \\ a+b & c-a & c-b \end{vmatrix} \] ### Step 4: Recognizing the Structure Now we can see that the determinant has a structure similar to \( \Delta_2 \): \[ \Delta_2 = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 5: Relating \( \Delta_1 \) and \( \Delta_2 \) We can show that \( \Delta_1 \) can be expressed in terms of \( \Delta_2 \) after performing a series of row and column swaps. Each swap changes the sign of the determinant, and since we perform an even number of swaps, we find that: \[ \Delta_1 = 2 \Delta_2 \] ### Step 6: Calculate the Ratio Thus, we can find the ratio: \[ \frac{\Delta_1}{\Delta_2} = \frac{2 \Delta_2}{\Delta_2} = 2 \] ### Final Answer \[ \frac{\Delta_1}{\Delta_2} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If Delta_(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then Delta_(1)-Delta_(2) equual

The value of Delta = |(b -c,c -a,a -b),(c -a,a -b,b -c),(a -b,b -c,c -a)| is

If Delta_(1) = |(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|, Delta_(2) = |(1,bc,a),(1,ca,b),(1,ab,c) | , then

Let a,b,c , in R not all are equal and Delta_(1)= |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}| Delta_(2)= |{:(a+2b,,b+3c,,c+4a),(b+2c,,c+3a,,a+4b),(c+2a,,a+3b,,b+4c):}|" then " (Delta_(2))/(Delta_(1)) = "____"

Suppose a,b,c are sides of a scalene triangle. Let Delta=|(a,b,c),(b,c,a),(c,a,b)| Then

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is