Home
Class 12
MATHS
Suppose a,b,c epsilon R and Delta=|(a,...

Suppose `a,b,c epsilon R` and
`Delta=|(a,a+b,a+b+c),(3a,4a+3b,5a+4b+3c),(6a,9a+6b,11a+9b+6c)|` If `Delta=11.728` then a=______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} a & a+b & a+b+c \\ 3a & 4a+3b & 5a+4b+3c \\ 6a & 9a+6b & 11a+9b+6c \end{vmatrix} \] We are given that \(\Delta = 11.728\). ### Step 1: Apply properties of determinants We can simplify the determinant by using the properties of determinants. We will replace the second row \(R_2\) with \(R_2 - 3R_1\) and the third row \(R_3\) with \(R_3 - 6R_1\). \[ R_2 \rightarrow R_2 - 3R_1 \] \[ R_3 \rightarrow R_3 - 6R_1 \] This gives us: \[ \Delta = \begin{vmatrix} a & a+b & a+b+c \\ 3a - 3a & (4a + 3b) - 3(a + b) & (5a + 4b + 3c) - 3(a + b + c) \\ 6a - 6a & (9a + 6b) - 6(a + b) & (11a + 9b + 6c) - 6(a + b + c) \end{vmatrix} \] ### Step 2: Simplify the determinant Calculating the new rows: - For \(R_2\): - First element: \(3a - 3a = 0\) - Second element: \(4a + 3b - 3a - 3b = a\) - Third element: \(5a + 4b + 3c - 3a - 3b - 3c = 2a + b\) - For \(R_3\): - First element: \(6a - 6a = 0\) - Second element: \(9a + 6b - 6a - 6b = 3a\) - Third element: \(11a + 9b + 6c - 6a - 6b - 6c = 5a + 3b\) Thus, we have: \[ \Delta = \begin{vmatrix} a & a+b & a+b+c \\ 0 & a & 2a + b \\ 0 & 3a & 5a + 3b \end{vmatrix} \] ### Step 3: Expand the determinant Since the first column has two zeros, we can expand along the first column: \[ \Delta = a \begin{vmatrix} a & 2a + b \\ 3a & 5a + 3b \end{vmatrix} \] Calculating the 2x2 determinant: \[ = a \left( a(5a + 3b) - (2a + b)(3a) \right) \] \[ = a \left( 5a^2 + 3ab - (6a^2 + 3ab) \right) \] \[ = a \left( 5a^2 + 3ab - 6a^2 - 3ab \right) \] \[ = a \left( -a^2 \right) \] \[ = -a^3 \] ### Step 4: Set the determinant equal to the given value We know that: \[ -a^3 = 11.728 \] Thus: \[ a^3 = -11.728 \] ### Step 5: Solve for \(a\) Taking the cube root: \[ a = -\sqrt[3]{11.728} \] Calculating the cube root: \[ a \approx -2.272 \] ### Final Answer Thus, the value of \(a\) is: \[ \boxed{-2.272} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Suppose a,b,c in R and a+b+c!=0. Let Delta=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|. If Delta=0, then

Suppose a, b, c are three non-coplanar vectors. Suppose Delta=|{:(a*a, a* b, a*c), (b*a, b*b, b*c), (c*a, c*b, c*c):}| If Delta=[a b c]^(r)" then " r= _______

Suppose a,b, c epsilon R on abc!=0 . Let Delta=|(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c)| If Delta=0 , then 1/a+1/b+1/c is equal to

If a=omega!=1 , is a cube root of unity b=785,c=2008i and Delta=|(a,a+b,a+b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a+6b+3c)| then Delta equals

Suppose a,b,c epsilon R and a,b,c gt 0 . Let Delta=|(loga, logb, logc),(log(7a),log(49b),log(343c)),(log(3a),log(9b),log(27c))| then Delta is equals to

|[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|=?

If a=i,b=omega and C=omega^(2), then the value of determinant det[[a,a+b,a+b+c3a,4a+3b,5a+4b+3c6a,9a+6b,11a+9a+6c]]

Add: 3a - 4b + 4c, 2a + 3b - 8c, a - 6b + c

Let a,b,c , in R not all are equal and Delta_(1)= |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}| Delta_(2)= |{:(a+2b,,b+3c,,c+4a),(b+2c,,c+3a,,a+4b),(c+2a,,a+3b,,b+4c):}|" then " (Delta_(2))/(Delta_(1)) = "____"