Home
Class 12
MATHS
Let f(x)=|(4x^(2)+2x,2x+1,2x-2),(8x^(2...

Let
`f(x)=|(4x^(2)+2x,2x+1,2x-2),(8x^(2)+6x-1,6x,6x-3),((2x+1)^(2)+2,4x-1,4x-1)|`
If `f(x)=ax+b`, then `1/24(2a+3b)=`_____________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( f(x) \) and express it in the form \( f(x) = ax + b \). Then, we will find \( \frac{1}{24}(2a + 3b) \). ### Step 1: Write down the determinant The function is given as: \[ f(x) = \begin{vmatrix} 4x^2 + 2x & 2x + 1 & 2x - 2 \\ 8x^2 + 6x - 1 & 6x & 6x - 3 \\ (2x + 1)^2 + 2 & 4x - 1 & 4x - 1 \end{vmatrix} \] ### Step 2: Calculate the determinant We will calculate the determinant using the formula for a \( 3 \times 3 \) determinant: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \] Substituting the elements from our determinant: - \( a = 4x^2 + 2x \) - \( b = 2x + 1 \) - \( c = 2x - 2 \) - \( d = 8x^2 + 6x - 1 \) - \( e = 6x \) - \( f = 6x - 3 \) - \( g = (2x + 1)^2 + 2 \) - \( h = 4x - 1 \) - \( i = 4x - 1 \) Now we compute \( f(x) \). ### Step 3: Simplify the determinant 1. **Calculate \( ei - fh \)**: \[ ei = 6x(4x - 1) = 24x^2 - 6x \] \[ fh = (6x - 3)(4x - 1) = 24x^2 - 9x - 12 \] \[ ei - fh = (24x^2 - 6x) - (24x^2 - 9x - 12) = 3x + 12 \] 2. **Calculate \( di - fg \)**: \[ di = (8x^2 + 6x - 1)(4x - 1) \] \[ fg = (6x - 3)((2x + 1)^2 + 2) \] (This calculation will yield a polynomial in \( x \).) 3. **Calculate \( dh - eg \)**: \[ dh = (8x^2 + 6x - 1)(4x - 1) \] \[ eg = 6x((2x + 1)^2 + 2) \] (This will also yield a polynomial.) ### Step 4: Combine results After calculating the determinant, we will express it in the form \( ax + b \) by collecting like terms. ### Step 5: Identify coefficients \( a \) and \( b \) From the simplified determinant, we will identify the coefficients \( a \) and \( b \). ### Step 6: Calculate \( \frac{1}{24}(2a + 3b) \) Once we have \( a \) and \( b \): \[ \frac{1}{24}(2a + 3b) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

Let f(x)=8x^(3)-6x^(2)-2x+1, then

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

Simplify (x+2)(x^(2)-6x+8)-(2x-3)(2x^(2)-x-1)

If Delta(x)=|{:(x^2+4x-3,2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-6x+1,16x-6,104):}|=ax^3+bx^2+cx+d then

((6x^(4)+8x^(3)+27x^(2)+7)/(3x^(2)+4x+1))

Solve : log_(1-2x)(6x^(2)-5x+1)-log_(1-3x)(4x^(2)-4x+1)=2