Home
Class 12
MATHS
Let f(x)=|(1,3,5),(x-2,3x^(2)-12,5x^(3)-...

Let `f(x)=|(1,3,5),(x-2,3x^(2)-12,5x^(3)-40),(x-3,3x^(2)-27,2x^(3)-54)|` then `f(2)f(3)+f(2)f(7)+f(3)f(7)=`__________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) which is defined as the determinant of the matrix: \[ f(x) = \begin{vmatrix} 1 & 3 & 5 \\ x-2 & 3x^2 - 12 & 5x^3 - 40 \\ x-3 & 3x^2 - 27 & 2x^3 - 54 \end{vmatrix} \] We will calculate \( f(2) \), \( f(3) \), and \( f(7) \) and then find the expression \( f(2)f(3) + f(2)f(7) + f(3)f(7) \). ### Step 1: Calculate \( f(2) \) Substituting \( x = 2 \) into the matrix: \[ f(2) = \begin{vmatrix} 1 & 3 & 5 \\ 2-2 & 3(2^2) - 12 & 5(2^3) - 40 \\ 2-3 & 3(2^2) - 27 & 2(2^3) - 54 \end{vmatrix} \] This simplifies to: \[ f(2) = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 12 - 12 & 40 - 40 \\ -1 & 12 - 27 & 16 - 54 \end{vmatrix} \] Calculating the second row: \[ f(2) = \begin{vmatrix} 1 & 3 & 5 \\ 0 & 0 & 0 \\ -1 & -15 & -38 \end{vmatrix} \] Since one row is entirely zeros, the determinant is: \[ f(2) = 0 \] ### Step 2: Calculate \( f(3) \) Now substituting \( x = 3 \): \[ f(3) = \begin{vmatrix} 1 & 3 & 5 \\ 3-2 & 3(3^2) - 12 & 5(3^3) - 40 \\ 3-3 & 3(3^2) - 27 & 2(3^3) - 54 \end{vmatrix} \] This simplifies to: \[ f(3) = \begin{vmatrix} 1 & 3 & 5 \\ 1 & 27 - 12 & 135 - 40 \\ 0 & 27 - 27 & 54 - 54 \end{vmatrix} \] Calculating the second row: \[ f(3) = \begin{vmatrix} 1 & 3 & 5 \\ 1 & 15 & 95 \\ 0 & 0 & 0 \end{vmatrix} \] Again, since one row is entirely zeros, the determinant is: \[ f(3) = 0 \] ### Step 3: Calculate \( f(7) \) Now substituting \( x = 7 \): \[ f(7) = \begin{vmatrix} 1 & 3 & 5 \\ 7-2 & 3(7^2) - 12 & 5(7^3) - 40 \\ 7-3 & 3(7^2) - 27 & 2(7^3) - 54 \end{vmatrix} \] This simplifies to: \[ f(7) = \begin{vmatrix} 1 & 3 & 5 \\ 5 & 147 - 12 & 1715 - 40 \\ 4 & 147 - 27 & 686 - 54 \end{vmatrix} \] Calculating the second row: \[ f(7) = \begin{vmatrix} 1 & 3 & 5 \\ 5 & 135 & 1675 \\ 4 & 120 & 632 \end{vmatrix} \] We will compute this determinant, but since \( f(2) \) and \( f(3) \) are both zero, we can directly evaluate: ### Step 4: Calculate the final expression Now we compute: \[ f(2)f(3) + f(2)f(7) + f(3)f(7) = 0 \cdot 0 + 0 \cdot f(7) + 0 \cdot f(7) = 0 \] Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

f(x)=-(1)/(3)x^(3)+5x^(2)+12

if f(x)=|[x-3,2x^2-18,3x^3-81],[x-5,2x^2-50,4x^3-500],[1,2,3]| then f(1)f(3)+f(3)f(5)+f(5)f(1) is equalto

If f(x)=x^(3)-2x^(2)+7x+5 ,then f(x-2)=

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x).

Let f(x)=cot^(-1)((x^(2)-x+1)/(2x-3x^(2))+(x^(2)-x+1)/(3-2x)) and if f((3)/(2))+f((5)/(7))+f((2)/(3))+f((7)/(5))=k pi then k is

If f(x)=x^(3)-2^(2)+7+5thn f(x-2)=

Let f(x)=x^(3)/3-x^(2)/2+x-16 . Find f^(')(0), f^(')(-1) .

if f(x)=x^(3)-2x^(2)+3x-5, then f(sin(5(pi)/(2)))+f(sin(3(pi)/(2)))=

If f'(x)=3x^(2)+2x-4 and f(1)=3, then f(x)=