Home
Class 12
MATHS
Suppose x+iy=|(7i,-5i,1),(14,5i,-1),(28,...

Suppose `x+iy=|(7i,-5i,1),(14,5i,-1),(28,5,i)|` then `sqrt((x+1//4)^(2)+y^(2))=`__________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given in the question and then find the required expression. Let's break it down step-by-step. ### Step 1: Evaluate the Determinant We have the determinant: \[ D = \begin{vmatrix} 7i & -5i & 1 \\ 14 & 5i & -1 \\ 28 & 5 & i \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we can expand it as follows: \[ D = 7i \begin{vmatrix} 5i & -1 \\ 5 & i \end{vmatrix} - (-5i) \begin{vmatrix} 14 & -1 \\ 28 & i \end{vmatrix} + 1 \begin{vmatrix} 14 & 5i \\ 28 & 5 \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants 1. **First 2x2 Determinant:** \[ \begin{vmatrix} 5i & -1 \\ 5 & i \end{vmatrix} = (5i)(i) - (-1)(5) = 5i^2 + 5 = 5(-1) + 5 = -5 + 5 = 0 \] 2. **Second 2x2 Determinant:** \[ \begin{vmatrix} 14 & -1 \\ 28 & i \end{vmatrix} = (14)(i) - (-1)(28) = 14i + 28 \] 3. **Third 2x2 Determinant:** \[ \begin{vmatrix} 14 & 5i \\ 28 & 5 \end{vmatrix} = (14)(5) - (5i)(28) = 70 - 140i \] ### Step 3: Substitute Back into the Determinant Expression Now substituting back into the determinant expression: \[ D = 7i(0) + 5i(14i + 28) + (70 - 140i) \] This simplifies to: \[ D = 0 + 5i(14i + 28) + (70 - 140i) \] Calculating \(5i(14i + 28)\): \[ = 5i(14i) + 5i(28) = 70i^2 + 140i = 70(-1) + 140i = -70 + 140i \] Now substituting this back into \(D\): \[ D = (-70 + 140i) + (70 - 140i) = 0 \] ### Step 4: Finding \(x\) and \(y\) From the determinant, we have: \[ x + iy = 0 \implies x = 0 \text{ and } y = 0 \] ### Step 5: Calculate the Required Expression Now we need to find: \[ \sqrt{\left(x + \frac{1}{4}\right)^2 + y^2} \] Substituting \(x = 0\) and \(y = 0\): \[ = \sqrt{\left(0 + \frac{1}{4}\right)^2 + 0^2} = \sqrt{\left(\frac{1}{4}\right)^2} = \sqrt{\frac{1}{16}} = \frac{1}{4} \] ### Final Answer Thus, the final answer is: \[ \frac{1}{4} = 0.25 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If |{:(6i,-3i,1),(4,3i,-1),(20,3,i):}|=x+iy,i=sqrt(-1) then

If x + iy=|{:(6i,-3i,1),(4,3i,-1),(20,3,i):}| , then what is x - iy equal to ?

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

If z = |{:(1 , 1 + 2i, - 5i),(1 - 2i,-3,5+3i),(5i,5-3i,7):}| , then (i= sqrt(-1))

If x+iy=sqrt((3+4i)/(5+12i)) then 169(x^(2)+y^(2))^(2)=

If x+iy=(1+2i)/(2+i) prove that x^(2)+y^(2)=1

If z=|{:(3+2i,5-i,7-3i),(i,2i,-3i),(3-2i,5+i,7+3i):}|,"where "i=sqrt(-1),"then"

If x+iy=(1+i)(1+2i)(1+3i) , then x^(2)+y^(2) equals: