Home
Class 12
MATHS
|(1,cos(pi//12),cos(pi//3)),(cos(pi//12)...

`|(1,cos(pi//12),cos(pi//3)),(cos(pi//12),1,cos(pi//4)),(cos(pi//3),cos(pi//4),1)|=1`_________________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 1 & \cos(\frac{\pi}{12}) & \cos(\frac{\pi}{3}) \\ \cos(\frac{\pi}{12}) & 1 & \cos(\frac{\pi}{4}) \\ \cos(\frac{\pi}{3}) & \cos(\frac{\pi}{4}) & 1 \end{vmatrix} \] we will use the properties of determinants and trigonometric identities. ### Step 1: Write the determinant We start by writing the determinant explicitly: \[ D = 1 \cdot \begin{vmatrix} 1 & \cos(\frac{\pi}{4}) \\ \cos(\frac{\pi}{4}) & 1 \end{vmatrix} - \cos(\frac{\pi}{12}) \cdot \begin{vmatrix} \cos(\frac{\pi}{12}) & \cos(\frac{\pi}{4}) \\ \cos(\frac{\pi}{3}) & 1 \end{vmatrix} + \cos(\frac{\pi}{3}) \cdot \begin{vmatrix} \cos(\frac{\pi}{12}) & 1 \\ \cos(\frac{\pi}{3}) & \cos(\frac{\pi}{4}) \end{vmatrix} \] ### Step 2: Calculate the 2x2 determinants 1. Calculate the first 2x2 determinant: \[ \begin{vmatrix} 1 & \cos(\frac{\pi}{4}) \\ \cos(\frac{\pi}{4}) & 1 \end{vmatrix} = 1 \cdot 1 - \cos^2(\frac{\pi}{4}) = 1 - \left(\frac{1}{\sqrt{2}}\right)^2 = 1 - \frac{1}{2} = \frac{1}{2} \] 2. Calculate the second 2x2 determinant: \[ \begin{vmatrix} \cos(\frac{\pi}{12}) & \cos(\frac{\pi}{4}) \\ \cos(\frac{\pi}{3}) & 1 \end{vmatrix} = \cos(\frac{\pi}{12}) \cdot 1 - \cos(\frac{\pi}{4}) \cdot \cos(\frac{\pi}{3}) = \cos(\frac{\pi}{12}) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) = \cos(\frac{\pi}{12}) - \frac{1}{2\sqrt{2}} \] 3. Calculate the third 2x2 determinant: \[ \begin{vmatrix} \cos(\frac{\pi}{12}) & 1 \\ \cos(\frac{\pi}{3}) & \cos(\frac{\pi}{4}) \end{vmatrix} = \cos(\frac{\pi}{12}) \cdot \cos(\frac{\pi}{4}) - 1 \cdot \cos(\frac{\pi}{3}) = \frac{\cos(\frac{\pi}{12})}{\sqrt{2}} - \frac{1}{2} \] ### Step 3: Substitute back into the determinant Now substituting back into the expression for \(D\): \[ D = 1 \cdot \frac{1}{2} - \cos(\frac{\pi}{12}) \left(\cos(\frac{\pi}{12}) - \frac{1}{2\sqrt{2}}\right) + \frac{1}{2} \left(\frac{\cos(\frac{\pi}{12})}{\sqrt{2}} - \frac{1}{2}\right) \] ### Step 4: Simplify the expression 1. The first term is \( \frac{1}{2} \). 2. The second term expands to: \[ -\cos^2(\frac{\pi}{12}) + \frac{\cos(\frac{\pi}{12})}{2\sqrt{2}} \] 3. The third term expands to: \[ \frac{1}{2\sqrt{2}} \cos(\frac{\pi}{12}) - \frac{1}{4} \] Combining all these terms, we get: \[ D = \frac{1}{2} - \cos^2(\frac{\pi}{12}) + \frac{1}{2\sqrt{2}} \cos(\frac{\pi}{12}) + \frac{1}{2\sqrt{2}} \cos(\frac{\pi}{12}) - \frac{1}{4} \] ### Step 5: Final simplification Combine like terms: \[ D = \frac{1}{4} - \cos^2(\frac{\pi}{12}) + \frac{1}{\sqrt{2}} \cos(\frac{\pi}{12}) \] Setting \(D = 1\) leads us to solve for \(\cos(\frac{\pi}{12})\) using the quadratic equation formed.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

cos^(-1) (cos ((4pi)/3))

(sin((5pi)/12)-cos((5pi)/12))/(cos((5pi)/12)+sin((5pi)/12))=

Evaluate: (1+cos(pi/8))(1+cos(3pi/8))(1+cos(5pi/8))(1+cos (7pi/8))

The value of |(cos.(2pi)/(63),cos.(3pi)/(70),cos.(4pi)/(77)),(cos.(pi)/(72),cos.(pi)/(40),cos.(3pi)/(88)),(1,cos.(pi)/(90),cos.(2pi)/(99))| is equal to

Prove that (1+cos(pi/10))(1+cos(3pi/10))(1+cos(7pi/10))(1+cos(9pi/10))=1/16

Prove that :16cos2(pi)/(15)cos4(pi)/(15)cos8(pi)/(15)cos16(pi)/(15)=1

Prove that (1 + cos(pi/8))(1 + cos(3pi/8))(1 + cos(5pi/8))(1 + cos(7pi/8)) = 1/8