Home
Class 12
MATHS
If a(1),a(2),a(3),……….a(n) ………… are in G...

If `a_(1),a_(2),a_(3),……….a_(n)` ………… are in G.P and `a_(i) gt 0 ` then the value of the determinant
`|(loga_(n),log a_(n+1),loga_(n+2)),(loga_(n+1),loga_(n+2),loga_(n+3)),(loga_(n+2),loga_(n+3),loga_(n+4))|` is

A

2

B

1

C

0

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem step by step, we start with the determinant: \[ D = \begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+1} & \log a_{n+2} & \log a_{n+3} \\ \log a_{n+2} & \log a_{n+3} & \log a_{n+4} \end{vmatrix} \] ### Step 1: Understanding the terms in the determinant Since \(a_1, a_2, a_3, \ldots, a_n\) are in a geometric progression (G.P.), we can express the terms as: - \(a_n = a_1 r^{n-1}\) - \(a_{n+1} = a_1 r^n\) - \(a_{n+2} = a_1 r^{n+1}\) - \(a_{n+3} = a_1 r^{n+2}\) - \(a_{n+4} = a_1 r^{n+3}\) where \(r\) is the common ratio of the G.P. ### Step 2: Substitute the terms into the determinant Now substituting these expressions into the determinant, we have: \[ D = \begin{vmatrix} \log(a_1 r^{n-1}) & \log(a_1 r^n) & \log(a_1 r^{n+1}) \\ \log(a_1 r^n) & \log(a_1 r^{n+1}) & \log(a_1 r^{n+2}) \\ \log(a_1 r^{n+1}) & \log(a_1 r^{n+2}) & \log(a_1 r^{n+3}) \end{vmatrix} \] Using the property of logarithms, we can simplify: \[ \log(a_1 r^k) = \log a_1 + k \log r \] Thus, we rewrite the determinant as: \[ D = \begin{vmatrix} \log a_1 + (n-1) \log r & \log a_1 + n \log r & \log a_1 + (n+1) \log r \\ \log a_1 + n \log r & \log a_1 + (n+1) \log r & \log a_1 + (n+2) \log r \\ \log a_1 + (n+1) \log r & \log a_1 + (n+2) \log r & \log a_1 + (n+3) \log r \end{vmatrix} \] ### Step 3: Factor out common terms We can factor out \(\log a_1\) and \(\log r\) from each column: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \cdot (\log r)^2 \] ### Step 4: Analyze the determinant Notice that the matrix formed by the coefficients of \(\log a_1\) and \(\log r\) is: \[ \begin{vmatrix} n-1 & n & n+1 \\ n & n+1 & n+2 \\ n+1 & n+2 & n+3 \end{vmatrix} \] This matrix has identical rows, which means that the determinant evaluates to zero. ### Conclusion Thus, the value of the determinant \(D\) is: \[ D = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,….,a_n are in G.P. are in a_i > 0 for each I, then the determinant Delta=|{:(loga_n,log a_(n+2),log a_(n+4)),(log a_(n+6),log a_(n+8), log a_(n+10)),(log a_(n+12), log a_(n+14), loga_(n+16)):}|

If a_(1),a_(2),a_(3)… are in G.P. then the value of |{:(log a_(n),loga_(n+1),log a_(n+2)),(log a_(n+3),log a_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7),log a_(n+8)):}| is

If a_(1),a_(2),a_(3),...... are in G.P.then the value of determinant det[[log(a_(n)),log(a_(n+1)),log(a_(n+2))log(a_(n+3)),log(a_(n+4)),log(a_(n+5))log(a_(n+6)),log(a_(n+7)),log(a_(n+8))]] equals

If a_1,a_2,a_3,.....a_n.... are in G.P. then the determinant Delta=|[loga_n,loga_(n+1),loga_(n+2)],[loga_(n+3),loga_(n+4),loga_(n+5)],[loga_(n+6),loga_(n+7),loga_(n+8)]| is equal to- (A) -2 (B) 1 (C) -1 (D) 0

MCGROW HILL PUBLICATION-DETERMINANTS-QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS
  1. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  2. If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy ...

    Text Solution

    |

  3. If a(1),a(2),a(3),……….a(n) ………… are in G.P and a(i) gt 0 then the va...

    Text Solution

    |

  4. If a^(2)+b^(2)+c^(2)=-2 and |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((...

    Text Solution

    |

  5. The value of |alpha| for which the system of equation alphax+y+z=...

    Text Solution

    |

  6. If D = |(1,1,1),(1,1 +x,1),(1,1,1 +y)| " for " x!= 0, y != 0, then D i...

    Text Solution

    |

  7. Let a,b and c be such that (b+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1)...

    Text Solution

    |

  8. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  9. Statement 1: The system of linear equations x|(sinalpha)y+(cos alpha...

    Text Solution

    |

  10. If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)...

    Text Solution

    |

  11. If a , b , c are non-zero real numbers and if the system of equations ...

    Text Solution

    |

  12. Let fori 1, 2, 3, pi(x) be a polynomial ofdegree 2 in x1 pi (x) and ...

    Text Solution

    |

  13. If |(a^(2),b^(2),c^(2)),((a+lamda)^(2),(b+lamda)^(2),(c+lamda)^(2)),...

    Text Solution

    |

  14. If Deltar=|(r,2r-1,3r+2),(n/2,n-1,a),(1/2n(n-1),(n-1)^2,1/2(n-1)(3n+4...

    Text Solution

    |

  15. The set of all values of lambda for which the system of linear equat...

    Text Solution

    |

  16. If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 t...

    Text Solution

    |

  17. The least value of the product xyz for which the determinant |(x,1,1)...

    Text Solution

    |

  18. The system of linear equations x + lambda y-z =0, lambdax-y -z =0, x...

    Text Solution

    |

  19. The number of distinct real roots of the equation, |(cos x, sin x , si...

    Text Solution

    |

  20. If S is the set of distinct values of ' b for which the following syst...

    Text Solution

    |