Home
Class 12
MATHS
The system of lienar equations x-y+z=1...

The system of lienar equations
`x-y+z=1`
`x+y-z=3`
`x-4y+4z=alpha` has

A

a unique solution when `alpha=2`

B

a unique number when `alpha!=-2`

C

an infinite number of solutions when `alpha=2`

D

an infinite number of solutions, when `alpha=-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations given by: 1. \( x - y + z = 1 \) (Equation 1) 2. \( x + y - z = 3 \) (Equation 2) 3. \( x - 4y + 4z = \alpha \) (Equation 3) we will analyze the determinant of the coefficient matrix and find the conditions under which the system has a unique solution, infinite solutions, or no solution. ### Step 1: Form the Coefficient Matrix The coefficient matrix \( A \) for the system of equations is: \[ A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -4 & 4 \end{bmatrix} \] ### Step 2: Calculate the Determinant of Matrix \( A \) To determine the nature of the solutions, we need to calculate the determinant of matrix \( A \): \[ \text{det}(A) = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -4 & 4 \end{vmatrix} \] Expanding the determinant along the first row: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 1 & -1 \\ -4 & 4 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 1 & -1 \\ 1 & 4 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & -4 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & -1 \\ -4 & 4 \end{vmatrix} = (1)(4) - (-1)(-4) = 4 - 4 = 0 \) 2. \( \begin{vmatrix} 1 & -1 \\ 1 & 4 \end{vmatrix} = (1)(4) - (-1)(1) = 4 + 1 = 5 \) 3. \( \begin{vmatrix} 1 & 1 \\ 1 & -4 \end{vmatrix} = (1)(-4) - (1)(1) = -4 - 1 = -5 \) Substituting back into the determinant calculation: \[ \text{det}(A) = 1 \cdot 0 + 1 \cdot 5 + 1 \cdot (-5) = 0 + 5 - 5 = 0 \] ### Step 3: Analyze the Determinant Since \( \text{det}(A) = 0 \), the system does not have a unique solution. We need to check for conditions of infinite solutions or no solutions. ### Step 4: Formulate the Augmented Matrix The augmented matrix for the system is: \[ \begin{bmatrix} 1 & -1 & 1 & | & 1 \\ 1 & 1 & -1 & | & 3 \\ 1 & -4 & 4 & | & \alpha \end{bmatrix} \] ### Step 5: Calculate \( \Delta_1 \) for Infinite Solutions To find the condition for infinite solutions, we calculate \( \Delta_1 \): \[ \Delta_1 = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -4 & \alpha \end{vmatrix} \] Expanding this determinant: \[ \Delta_1 = 1 \cdot \begin{vmatrix} 1 & -1 \\ -4 & \alpha \end{vmatrix} - (-1) \cdot \begin{vmatrix} 1 & -1 \\ 1 & \alpha \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & -4 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & -1 \\ -4 & \alpha \end{vmatrix} = (1)(\alpha) - (-1)(-4) = \alpha - 4 \) 2. \( \begin{vmatrix} 1 & -1 \\ 1 & \alpha \end{vmatrix} = (1)(\alpha) - (-1)(1) = \alpha + 1 \) 3. \( \begin{vmatrix} 1 & 1 \\ 1 & -4 \end{vmatrix} = (1)(-4) - (1)(1) = -4 - 1 = -5 \) Substituting back into the determinant calculation: \[ \Delta_1 = 1 \cdot (\alpha - 4) + 1 \cdot (\alpha + 1) + 1 \cdot (-5) = \alpha - 4 + \alpha + 1 - 5 = 2\alpha - 8 \] Setting \( \Delta_1 = 0 \) for infinite solutions: \[ 2\alpha - 8 = 0 \implies \alpha = 4 \] ### Step 6: Calculate \( \Delta_2 \) for No Solutions Now we will calculate \( \Delta_2 \): \[ \Delta_2 = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 3 \\ 1 & -4 & 4 \end{vmatrix} \] Expanding this determinant: \[ \Delta_2 = 1 \cdot \begin{vmatrix} 1 & 3 \\ -4 & 4 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & -4 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 3 \\ -4 & 4 \end{vmatrix} = (1)(4) - (3)(-4) = 4 + 12 = 16 \) 2. \( \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} = (1)(4) - (3)(1) = 4 - 3 = 1 \) 3. \( \begin{vmatrix} 1 & 1 \\ 1 & -4 \end{vmatrix} = -5 \) (as calculated earlier) Substituting back into the determinant calculation: \[ \Delta_2 = 1 \cdot 16 + 1 \cdot 1 + 1 \cdot (-5) = 16 + 1 - 5 = 12 \] ### Step 7: Conclusion Since \( \text{det}(A) = 0 \) and \( \Delta_1 = 0 \) leads to \( \alpha = 4 \) for infinite solutions, and \( \Delta_2 \neq 0 \) indicates no solutions for other values of \( \alpha \), we conclude: - For \( \alpha = 4 \), the system has infinite solutions. - For \( \alpha \neq 4 \), the system has no solutions. Thus, the conditions for the system of equations are: - **Unique solution**: Not possible (determinant is zero). - **Infinite solutions**: When \( \alpha = 4 \). - **No solutions**: For any \( \alpha \) other than 4.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/JEE MAIN PAPERS|41 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

The system of linear equations x - 2y + z = 4 2x + 3y - 4z = 1 x - 9y + (2a + 3)z = 5a + 1 has infinitely many solution for:

Use matrix method, solve the system of linear equations : x + y = 5 , y + z = 3 , x + z = 4 .

The system of linear equations x-y-2z=6.-x+y+z=mu,lambda x+y+z=3 has

The system of linear equations lambda x + y + z = 3 x - y - 2z = 6 -x + y + z = mu has

The value of alpha for which the system of equations x+y+z=1, x+2y+4z=alpha, x+4y+10z=alpha^2 has no solution is (A) -1 (B) 0 (C) 3 (D) 2

MCGROW HILL PUBLICATION-DETERMINANTS-QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. If the system of equations x+y+z=0 ax+by+z=0 bx+y+z=0 has a no...

    Text Solution

    |

  2. The system of linear equations (lamda+3)x+(lamda+2)y+z=0 3x+(lamda...

    Text Solution

    |

  3. If Delta(k)=|(2(3^(k-1)),3(4^(k-1)),4(5^(k)-1)),(alpha, beta, gamma)...

    Text Solution

    |

  4. Let P=[a("ij")] be a 3xx3 matrix and let Q=[b("ij")], where b("ij")=2^...

    Text Solution

    |

  5. Let Delta(r)=|(2^(r-1),2(3^(r-1)),4(5^(r-1))),(alpha, beta, gamma),(2^...

    Text Solution

    |

  6. If x(1),x(2),x(3),……………..x(13) are in A.P. then the value of |(e^(x(...

    Text Solution

    |

  7. Find the value of determinat |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(...

    Text Solution

    |

  8. If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy ...

    Text Solution

    |

  9. In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0, then sin^(2) A + s...

    Text Solution

    |

  10. The system of lienar equations x-y+z=1 x+y-z=3 x-4y+4z=alpha has

    Text Solution

    |

  11. For all values of theta in(0,pi/2), the determinant of the matrix [(...

    Text Solution

    |

  12. Les S the set of all real values of a for which the following system o...

    Text Solution

    |

  13. |(2x,xy-xz,y),(2x+z+1,xy-xz+yz-z^2,1+y),(3x+1,2xy-2xz,1+y)| is equal t...

    Text Solution

    |

  14. Let S be the set of all real values of lamda for which the system of l...

    Text Solution

    |

  15. Ifthe equations a(y +z) =x,b(z+x) = y, c (x + y) = z have nontrivial...

    Text Solution

    |

  16. The value of a for whch the sytem of equations x+ay+z=1 ax+y+z=1 ...

    Text Solution

    |

  17. If the system of linear equations x+4y-3z=2 2x+7y-4z=alpha -x-5y...

    Text Solution

    |

  18. The number of solutions of the equation 3x-y-z=0 -3x+2y+z=0 -3x+...

    Text Solution

    |