Home
Class 12
MATHS
Let s be the distance between the lines:...

Let s be the distance between the lines:
`r=2i-j+k+t(2i+j+2k)` (1)
and `r=i+2j+5k+lambda(2i+j+2k)` (2) then `9s^(2)` =__________

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance \( s \) between the two given lines and then compute \( 9s^2 \), we will follow these steps: ### Step 1: Identify the lines and their parameters The equations of the lines are given as: 1. \( \mathbf{r} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} + t(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \) 2. \( \mathbf{r} = \mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \) From these equations, we can identify: - Direction vector \( \mathbf{b} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k} \) (same for both lines) - Point on line 1: \( \mathbf{A_1} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} \) - Point on line 2: \( \mathbf{A_2} = \mathbf{i} + 2\mathbf{j} + 5\mathbf{k} \) ### Step 2: Calculate the vector \( \mathbf{A_2} - \mathbf{A_1} \) \[ \mathbf{A_2} - \mathbf{A_1} = (\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) - (2\mathbf{i} - \mathbf{j} + \mathbf{k}) \] \[ = (\mathbf{i} - 2\mathbf{i}) + (2\mathbf{j} + \mathbf{j}) + (5\mathbf{k} - \mathbf{k}) \] \[ = -\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} \] ### Step 3: Compute the cross product \( \mathbf{b} \times (\mathbf{A_2} - \mathbf{A_1}) \) Using the determinant form: \[ \mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \quad \mathbf{A_2} - \mathbf{A_1} = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \] \[ \mathbf{b} \times (\mathbf{A_2} - \mathbf{A_1}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 2 \\ -1 & 3 & 4 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & 2 \\ -1 & 4 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} \] \[ = \mathbf{i} (1 \cdot 4 - 2 \cdot 3) - \mathbf{j} (2 \cdot 4 - 2 \cdot -1) + \mathbf{k} (2 \cdot 3 - 1 \cdot -1) \] \[ = \mathbf{i} (4 - 6) - \mathbf{j} (8 + 2) + \mathbf{k} (6 + 1) \] \[ = -2\mathbf{i} - 10\mathbf{j} + 7\mathbf{k} \] ### Step 4: Calculate the magnitude of the cross product \[ \|\mathbf{b} \times (\mathbf{A_2} - \mathbf{A_1})\| = \sqrt{(-2)^2 + (-10)^2 + 7^2} \] \[ = \sqrt{4 + 100 + 49} = \sqrt{153} \] ### Step 5: Calculate the magnitude of \( \mathbf{b} \) \[ \|\mathbf{b}\| = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 6: Compute the distance \( s \) Using the formula for the distance between two parallel lines: \[ s = \frac{\|\mathbf{b} \times (\mathbf{A_2} - \mathbf{A_1})\|}{\|\mathbf{b}\|} = \frac{\sqrt{153}}{3} \] ### Step 7: Compute \( 9s^2 \) \[ s^2 = \left(\frac{\sqrt{153}}{3}\right)^2 = \frac{153}{9} \] \[ 9s^2 = 9 \cdot \frac{153}{9} = 153 \] Thus, the final answer is: \[ \boxed{153} \]
Promotional Banner

Topper's Solved these Questions

  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT-BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS ))|15 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTIONS))|48 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2( SINGLE CORRECT ANSWER TYPE QUESTIONS))|30 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|13 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between the lines r=(4i-j)+lambda(i+2j-3k) and r=(i-j+2k)+mu(2i+4j-5k) is

The distance between the line vec r=2i-2j+3k+lambda(i-j+4k) and the plane vec r*(i+5j+k)=5 is

The sine of the angle between the lines r=2i+2j-k+(i+j+k)t and the plane r.(3i-4j+5k)=q is

The angle between the vectors i-j+k and -i+j+2k is

The lines vec r=i-j-k+s(i+2j-2k) and vec r=(i-2j+3k)+t(-i+j-2k)

If theta is the between the line r = ( i + 2j- k) + lambda (i - j + 2k) , lambda in R and the plane r. (2i - j + k ) = 4. then a value of cos theta is :

MCGROW HILL PUBLICATION-THE DIMENSIONAL GEOMETRY -SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)
  1. Suppose A(2,3,5),B(b,3,5) and C(7,5,c) are vertices of a triangle. If ...

    Text Solution

    |

  2. The plane 3x+4y+6z+7=0 is rotated about the line r=(i+2j-3k)+t(2i-3j...

    Text Solution

    |

  3. Let L be a line through B(3i+j-k) and parallel 21-j+2k. Suppose A is a...

    Text Solution

    |

  4. Suppose a=a(1)i+a(2)j+a(3)k is a vector which lies in the plane contai...

    Text Solution

    |

  5. Suppose position vectors of A, B, C are respectively i+2j+k,2i-j+2k an...

    Text Solution

    |

  6. Suppose H(3,2,-1) and C(3,2,5) are respectively the orthocentre and ci...

    Text Solution

    |

  7. The direction cosines of two lines satisfy 2l+2m-n=0 and lm+mn+nl=0. T...

    Text Solution

    |

  8. If equation of plane passing through (2,1,3),(3,2,1)and(1,3,2) is ax+b...

    Text Solution

    |

  9. The distance of the point (-1, -5, -10) from the point of intersection...

    Text Solution

    |

  10. If Q is foot of the perpendicular from the point P(4, - 5, 3) on the l...

    Text Solution

    |

  11. If the lines (x-4)/15 = (y-17)/9 = (z-11)/8 and (x-15)/4 = (y-9)/17 = ...

    Text Solution

    |

  12. If the root of perpendicular from A(3,1,0) on a line passing through B...

    Text Solution

    |

  13. Find the angle between the lines x-3y-4=0,4y-z+5=0a n dx+3y-11=0,2y...

    Text Solution

    |

  14. P,Q,R,S are the points (1,2,-2), (8,10,11), (1,2,3) and (3,5,7) respec...

    Text Solution

    |

  15. The area of the triangle whose vertices are A(1,-1,2),B(2,1-1)C(3...

    Text Solution

    |

  16. A plane passing through a point (1, 2, 2) and is perpendicular to two ...

    Text Solution

    |

  17. A variable plane x/a+y/b+z/c=1 at a unit distance from origin cuts the...

    Text Solution

    |

  18. A variable plane is at a constant distance p from the origin and meets...

    Text Solution

    |

  19. Find the point where the line (x-1)/2=(y-2)/-3=(z+3)/4 meets the plane...

    Text Solution

    |

  20. Let s be the distance between the lines: r=2i-j+k+t(2i+j+2k) (1) a...

    Text Solution

    |