Home
Class 12
MATHS
Shortest distance between z-axis and the...

Shortest distance between z-axis and the line `(x-2)/(3)=(y-5)/(2)=(z+1)/(-5)` is

A

`1//sqrt(13)`

B

`11//sqrt(13)`

C

`sqrt(11)//13`

D

`11//sqrt(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the z-axis and the given line represented by the equation \((x-2)/3 = (y-5)/2 = (z+1)/(-5)\), we will follow these steps: ### Step 1: Write the equations in vector form The given line can be expressed in vector form. The equation \((x-2)/3 = (y-5)/2 = (z+1)/(-5)\) can be rewritten as: \[ \mathbf{r} = \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix} \] where \(\lambda\) is a parameter. The z-axis can be represented as: \[ \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \] where \(\mu\) is another parameter. ### Step 2: Identify the direction vectors and points From the vector forms, we identify: - For the line: - Point \( \mathbf{a_1} = \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix} \) - Direction vector \( \mathbf{b_1} = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix} \) - For the z-axis: - Point \( \mathbf{a_2} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \) - Direction vector \( \mathbf{b_2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \) ### Step 3: Use the formula for the distance between two lines The formula for the shortest distance \(d\) between two skew lines given by: \[ d = \frac{|(\mathbf{b_1} \times \mathbf{b_2}) \cdot (\mathbf{a_2} - \mathbf{a_1})|}{|\mathbf{b_1} \times \mathbf{b_2}|} \] ### Step 4: Calculate \(\mathbf{b_1} \times \mathbf{b_2}\) To find the cross product \(\mathbf{b_1} \times \mathbf{b_2}\): \[ \mathbf{b_1} = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}, \quad \mathbf{b_2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \] Using the determinant method: \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & -5 \\ 0 & 0 & 1 \end{vmatrix} = \mathbf{i}(2 \cdot 1 - 0 \cdot -5) - \mathbf{j}(3 \cdot 1 - 0 \cdot -5) + \mathbf{k}(3 \cdot 0 - 2 \cdot 0) \] \[ = 2\mathbf{i} - 3\mathbf{j} + 0\mathbf{k} = \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix} \] ### Step 5: Calculate \(|\mathbf{b_1} \times \mathbf{b_2}|\) The magnitude is calculated as: \[ |\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{2^2 + (-3)^2 + 0^2} = \sqrt{4 + 9} = \sqrt{13} \] ### Step 6: Calculate \(\mathbf{a_2} - \mathbf{a_1}\) \[ \mathbf{a_2} - \mathbf{a_1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ 1 \end{pmatrix} \] ### Step 7: Calculate \((\mathbf{b_1} \times \mathbf{b_2}) \cdot (\mathbf{a_2} - \mathbf{a_1})\) \[ (\mathbf{b_1} \times \mathbf{b_2}) \cdot (\mathbf{a_2} - \mathbf{a_1}) = \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -5 \\ 1 \end{pmatrix} = 2 \cdot -2 + (-3) \cdot -5 + 0 \cdot 1 = -4 + 15 + 0 = 11 \] ### Step 8: Calculate the distance \(d\) Now substituting into the distance formula: \[ d = \frac{|11|}{\sqrt{13}} = \frac{11}{\sqrt{13}} \] ### Final Answer The shortest distance between the z-axis and the given line is: \[ \frac{11}{\sqrt{13}} \text{ units} \]
Promotional Banner

Topper's Solved these Questions

  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTIONS))|48 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTIONS))|16 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|23 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|13 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If the lies (x-3)/(1)=(y+2)/(-1)=(z+lambda)/(-2) lies on the line,2x-4y+3z=2, then the shortest distance between this line and the line,(x-1)/(12)=(y)/(9)=(z)/(4) is (A) 0 (B) 2 (C) 1 (D) 3

Points (1,-1,2) is the foot of perpendicular drawn from point (0,3,1) on the line (x-a)/l=(y-2)/3=(z-b)/4 find the shortest distance between this line and the line (x-1)/3=(y-2)/4=(z-3)/5

The shortest distance between the line (x-3)/(3)=(y)/(0)=(z)/(-4) and the y -axis is

The shortest distance between the lines (x-2)/(3)=(y+3)/(4)=(z-1)/(5) and (x-5)/(1)=(y-1)/(2)=(z-6)/(3) , is

Find the shortest distance between the lines given by (x-2)/(3)=(y-5)/(-2)=(z-1)/(1)and(x+1)/(2)=(y+2)/(-6)=(z-3)/(1)

If the line, (x-3)/(1) =(y+2)/(-1) = (z+ lamda)/(-2) lies in the plane, 2x -4y + 3z =2, then the shortest distance between this line and the line, (x-1)/(12) = y/9 =z/4 is :

The shortest distance between the lines (x-2)/(2)=(y-3)/(2)=(z-0)/(1) and (x+4)/(-1)=(y-7)/(8)=(z-5)/(4) lies in the interval

Find the shortest distance between the following lines: (x-3)/(1)=(y-5)/(-2)=(z-7)/(1) and (x+1)/(7)=(y+1)/(-6)=(z+1)/(1)

If 1,m ,n are the direction cosines of the line of shortest distance between the lines (x-3)/(2) = (y+15)/(-7) = (z-9)/(5) and (x+1)/(2) = (y-1)/(1) = (z-9)/(-3) then :

The shortest distance between the lines (x-3)/(2) = (y +15)/(-7) = (z-9)/(5) and (x+1)/(2) = (y-1)/(1) = (z-9)/(-3) is :