Home
Class 12
MATHS
Let the volume of a parallelopiped whose...

Let the volume of a parallelopiped whose coterminus edges are given by `u = I + j + lambdak, v = I + j + 3k` and w = 2i + j + k be 1 cu. unit. If `theta` be the angle between the edges u and w, then cos `theta` can be:

A

`7/(6sqrt(6))`

B

`5/7`

C

`7/(6sqrt(3))`

D

`5/(3sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the cosine of the angle \( \theta \) between the vectors \( \mathbf{u} \) and \( \mathbf{w} \) given the volume of the parallelepiped formed by the vectors \( \mathbf{u} \), \( \mathbf{v} \), and \( \mathbf{w} \). ### Step 1: Identify the vectors The vectors are given as: - \( \mathbf{u} = \mathbf{i} + \mathbf{j} + \lambda \mathbf{k} \) - \( \mathbf{v} = \mathbf{i} + \mathbf{j} + 3 \mathbf{k} \) - \( \mathbf{w} = 2 \mathbf{i} + \mathbf{j} + \mathbf{k} \) ### Step 2: Calculate the volume of the parallelepiped The volume \( V \) of the parallelepiped formed by the vectors \( \mathbf{u} \), \( \mathbf{v} \), and \( \mathbf{w} \) is given by the scalar triple product: \[ V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| \] We know that the volume is 1 cubic unit, so: \[ |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = 1 \] ### Step 3: Calculate \( \mathbf{v} \times \mathbf{w} \) To find \( \mathbf{v} \times \mathbf{w} \), we can use the determinant method: \[ \mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 3 \\ 2 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ = \mathbf{i} (1 \cdot 1 - 3 \cdot 1) - \mathbf{j} (1 \cdot 1 - 3 \cdot 2) + \mathbf{k} (1 \cdot 1 - 1 \cdot 2) \] \[ = \mathbf{i} (1 - 3) - \mathbf{j} (1 - 6) + \mathbf{k} (1 - 2) \] \[ = -2\mathbf{i} + 5\mathbf{j} - \mathbf{k} \] ### Step 4: Calculate \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \) Now we calculate \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \): \[ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (1\mathbf{i} + 1\mathbf{j} + \lambda\mathbf{k}) \cdot (-2\mathbf{i} + 5\mathbf{j} - 1\mathbf{k}) \] Calculating the dot product: \[ = 1 \cdot (-2) + 1 \cdot 5 + \lambda \cdot (-1) \] \[ = -2 + 5 - \lambda = 3 - \lambda \] Setting the absolute value equal to 1: \[ |3 - \lambda| = 1 \] This gives us two equations: 1. \( 3 - \lambda = 1 \) → \( \lambda = 2 \) 2. \( 3 - \lambda = -1 \) → \( \lambda = 4 \) ### Step 5: Calculate \( \cos \theta \) Now we find \( \cos \theta \) using the formula: \[ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{w}}{|\mathbf{u}| |\mathbf{w}|} \] First, calculate \( \mathbf{u} \cdot \mathbf{w} \): \[ \mathbf{u} \cdot \mathbf{w} = (1\mathbf{i} + 1\mathbf{j} + \lambda\mathbf{k}) \cdot (2\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}) \] Calculating the dot product: \[ = 1 \cdot 2 + 1 \cdot 1 + \lambda \cdot 1 = 2 + 1 + \lambda = 3 + \lambda \] Next, calculate \( |\mathbf{u}| \) and \( |\mathbf{w}| \): \[ |\mathbf{u}| = \sqrt{1^2 + 1^2 + \lambda^2} = \sqrt{2 + \lambda^2} \] \[ |\mathbf{w}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] Now substituting back into the cosine formula: \[ \cos \theta = \frac{3 + \lambda}{\sqrt{2 + \lambda^2} \cdot \sqrt{6}} \] ### Step 6: Substitute values of \( \lambda \) 1. For \( \lambda = 2 \): \[ \cos \theta = \frac{3 + 2}{\sqrt{2 + 2^2} \cdot \sqrt{6}} = \frac{5}{\sqrt{6} \cdot \sqrt{6}} = \frac{5}{6} \] 2. For \( \lambda = 4 \): \[ \cos \theta = \frac{3 + 4}{\sqrt{2 + 4^2} \cdot \sqrt{6}} = \frac{7}{\sqrt{18} \cdot \sqrt{6}} = \frac{7}{6\sqrt{3}} = \frac{7}{6\sqrt{3}} \] ### Final Result Thus, the possible values for \( \cos \theta \) are: - \( \frac{5}{6} \) - \( \frac{7}{6\sqrt{3}} \)
Promotional Banner

Topper's Solved these Questions

  • JEE ( MAIN) 2020 QUESTIONS WITH SOLUTIONS B.ARCH (6TH JAN -MORING)

    MCGROW HILL PUBLICATION|Exercise Question|25 Videos
  • JEE (MAIN) 2020 QUESTION PAPER (7TH JAN - AFTERNOON)

    MCGROW HILL PUBLICATION|Exercise Multiple Choice Question|25 Videos

Similar Questions

Explore conceptually related problems

Let the volume of parallelopiped whose coteriminous edges are given by u=i+j+lambdak, v=i+j+3k" and "w=2i+j+k be 1 ("unit")^(3) . If theta is angle between the edges u and w, then cos theta can be

if theta angle between two vectors 2i+j+7k and i+5j+k then cos theta

If volume of parallelopiped whose there coterminous edges are vec u = hat i + hat j + lambda hat k, vec v = 2 hati + hat j + hatk, vecw = hati+hatj+3hatk , is 1 cubic unit then cosine of angle between vec u and vecv is

If the volume of a parallelopiped, whose three coterminous edges are -12 vec i + lambda vec k; 3 vec j - vec k and 2 vec i + vec j - 15 vec k , is 546 then lambda =_______.

If the volumes of parallelepiped with coterminus edges -pj+5k,i-j+qk and 3i-5j is -8, then

If the volume of a parallelopiped whose coterminus edges are a=i+j+2k, b=2i+ lambda j+k and c=2i+2j+ lambda k is 35 m^3 , then a value of a.b + b.c - c.a is :

MCGROW HILL PUBLICATION-JEE (MAIN) 2020 QUESTION PAPER MATHEMATICS (8TH JAN - MORNING) -QUESTIONS
  1. The locus of a point which divides the line segment joining the point ...

    Text Solution

    |

  2. For a > 0, let the curves C(1) : y^(2) = ax and C(2) : x^(2) = ay int...

    Text Solution

    |

  3. f(x) = (8^(2x) - 8^(-2x))/(8^(2x) + 8^(-2x) find the inverse of the fu...

    Text Solution

    |

  4. lim(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to

    Text Solution

    |

  5. Let f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1, where |x| gt ...

    Text Solution

    |

  6. Roots of the equation x^2 + bx + 45 = 0, b in R lie on the curve |z + ...

    Text Solution

    |

  7. Mean and standard deviations of 10 observations are 20 and 2 respectiv...

    Text Solution

    |

  8. Let int (cos x dx)/(sin^3 x (1 + sin^6 x))^(2/3) = f(x), (1 + sin^6 x ...

    Text Solution

    |

  9. Let A and B be two independent events such that P(A) = 1/3 and P(B) = ...

    Text Solution

    |

  10. Let the volume of a parallelopiped whose coterminus edges are given by...

    Text Solution

    |

  11. Let two points be A(1,-1) and B(0, 2). If a point P(x', y') be such t...

    Text Solution

    |

  12. If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/...

    Text Solution

    |

  13. Let the line y=mx and the ellipse 2x^(2)+y^(2)=1 intersect at a point ...

    Text Solution

    |

  14. If c is a point at which Roll's theorem holds for the function, f(x) =...

    Text Solution

    |

  15. Let f(x) = x cos^(-1)(sin-|x|), x in (-pi/2,pi/2)

    Text Solution

    |

  16. An urn contains 5 read marbels,4 black marbels and 3 white marbles. Th...

    Text Solution

    |

  17. If normal at P on the curve y^2 - 3x^2 + y + 10 = 0 passes through the...

    Text Solution

    |

  18. The equation 2x^2 + (a - 10)x + 33/2 = 2a has real roots. Find least p...

    Text Solution

    |

  19. Find the sum, sum(k=1) ^(20) (1+2+3+.....+k)

    Text Solution

    |

  20. The number of 3xx3 matrices with entries from the set {-1, 0,1} such t...

    Text Solution

    |