Home
Class 10
MATHS
" 8.Using the function "f(x)=x^(1/x),x>0...

" 8.Using the function "f(x)=x^(1/x),x>0," prove that "e^(pi)>pi^(e)" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

Use the function f(x) = x^(1//x), x gt 0 to show that e^(pi) gt pi^(e) .

Use the functio f(x) = x^(1//x) , x > 0 to determine the greater of e^i and pi^e

The function f(x)=2sin x-e^(x), AA x in [0, pi] has

The function f(x)=2sin x-e^(x), AA x in [0, pi] has

Use the function f(x)=x^((1)/(x)),x>0, to determine the bigger of the two numbers e^(pi)and pi^(e).

Use the function f(x)=x^(1/x),x >0, to determine the bigger of the two numbers e^(pi)a n dpi^edot

Use the function f(x)=x^(1/x),x >0, to determine the bigger of the two numbers e^(pi)a n dpi^edot

Use the function f(x)=x^((1)/(x))(xgt0) to ascertain whether p^(e) or e^(p) is greater .

Use the function f(x)=x^(1/x), x gt 0 , to determine the bigger of the two numbers e^(pi) and pi^(e) .