Home
Class 12
MATHS
" 8."log|[x+(1)/(x)]|...

" 8."log|[x+(1)/(x)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1 (8log(1+x))/(1+x^2) dx is

The value of int_0^1 (8log(1+x))/(1+x^2) dx is:

If int(x^(2)+1)/((x-1)^(2)(x+3))dx=(3)/(8)log|x-1|-(1)/(2(x-1))+F(x)+C then 8F'(2) equals to

If f((3t-4)/(3t+4))=t+2 then int f(x)dx= (A) e^(x-2)log((3x-4)/(3x+4))(B)-(8)/(3)log|1-x|+2(x)/(3)+c(C)(8)/(3)log|1-x|+(x)/(3)+c(D)e^(x+2)log|(1+x)/(1-x)|+c

Find the integral int(1)/(4x^(2)+12x+5)dx A. (1)/(4)log|(2x+1)/(2x-5)|+C B. (1)/(8)log|(1+2x)/(5-2x)|+C C. (1)/(8)log|(2x-1)/(2x+5)|+C D. (1)/(4)log|(1-2x)/(5+2x)|+C

Show that int 1/(x^2-16)dx=1/8 log |(x-4)/(x+4)|+c

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

The value of int_0^1 (8 log (1 + x))/(1 + x^2) dx is:

The value of int_(0)^(1) (8 log(1+x))/(1+x^(2)) dx is

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is