Home
Class 12
MATHS
" Fior any two vectors "bar(a),bar(b)" s...

" Fior any two vectors "bar(a),bar(b)" show that "(1+|bar(a)|^(2))(1+|bar(b)|^(2))=|1-bar(a)*bar(b)|^(2)+|bar(a)+bar(b)+bar(a)timesbar(b)|^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors bar(a)andbar(b) , show that (1+|bara|^(2))(1+|barb|^2)=|1-bar(a).bar(b)|^(2)+|bar(a)+bar(b)+bar(a)xxbar(b)|^(2)

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=

If |bar(a)|=2,|bar(b)|=4 then (|bar(a)xxbar(b)|^(2))/(1-cos^(2)(bar(a),bar(b)))=

if |bar(a)|=2,|bar(b)|=4 then (|bar(a)xxbar(b)|^(2))/(1-cos^(2)(bar(a),bar(b)))=

If bar(p)=bar(a)+bar(b),bar(q)=bar(a)-bar(b),|bar(a)|=|bar(b)|=r , then |bar(p)timesbar(q)| =

Show that (bar(a)+bar(b)) . [(bar(b)+bar(c)) xx (bar(c )+bar(a))] = 2[bar(a)bar(b)bar(c )] .

If (bar(a)+bar(b))*(bar(a)+bar(b))=|bar(a)|^(2)+|bar(b)|^(2),bar(a)!=0,bar(b)!=0 , then

If bar(a),bar(b)andbar(c) are any three vectors, prove that (1) [bar(a)+bar(b) bar(b)+bar(c) bar(c)+bar(a)]=2[bar(a)bar(b)bar(c)] (2) [bar(a) bar(b)+bar(c) bar(a)+bar(b)+bar(c)]=0