Home
Class 12
MATHS
" (d) स्भीकर्रण "y=(c(1)+c(2)x)e^(x)" के...

" (d) स्भीकर्रण "y=(c_(1)+c_(2)x)e^(x)" के लिए अकबका समोकरण साd कीरात्र "

Promotional Banner

Similar Questions

Explore conceptually related problems

y=e^(x)(c_(1)+c_(2)x)

y = c_(1)e^(3x) +c_(2)e^(2x)

y = c_(1) e^(2x) +c_(2)e^(-2x)

Derivative of y=e^(x)(c_(1)+c_(2)x)

D.E., having the solution y=c_(1)+c_(2)e^(3x) , is A) y_(2)=3y B) y_(2)=3y_(1) C) y_(3)+3y_(1)=0 D) y_(2)+3y=0

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

The general solution of the differential equation (dy)/(dx) = e^(y) (e^(x) + e^(-x) + 2x) is a) e^(-y) = e^(x) - e^(-x) + x^(2) + C b) e^(-y) = e^(-x) - e^(x) - x^(2) + C c) e^(-y) = -e^(-x) - e^(x) - x^(2) + C d) e^(y) = e^(-x) + e^(x) + x^(2) + C

Which of the following differential equations has y=c_(1)e^(x)+c_(2)e^(-x) as the general solution ?

Which of the following differential equations has y=c_(1)e^(x)+c_(2)e^(-x) as the general solution ?