Home
Class 12
MATHS
If f(x)=[cosx-sinx -sin x cosc 1] and g(...

If `f(x)=[cosx-sinx -sin x cosc 1] and g(y)=[cosy sin y siny cos y],` then `[f(x)g(y)]^-1` is equal to (a) `f(-x)g(-y)` (b) `g(-y)f(-x)` (c) `f(x^-1)g(y^-1)` (d) `g(y^-1)f(x^-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(x) = [(cos x, - sin x, 0),(sin x, cos x, 0),(0,0,1)] and G(y) = [(cos y, 0, sin y),(0,1,0),(-sin y, 0, cos y)] then [F(x) G(y)]^(-1) is equal to a) F (-x) G(-y) b) G(-y) F(-x) c) F(x^(-1))G(y^(-1)) d) G(y^(-1))F(x^(-1))

F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] and G(x)=[[cosx,0,sinx],[0,1,0],[-sinx,0,cosx]], then [F(x)G(y)]^(-1) is equal to (A) F(-x)G(-y) (B) F(x-1)G(y-1) (C) G(-y)F(-x) (D) G(y^(-1))F(x^(-1))

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If f(x, y)=(max (x, y))^(min (x, y)) and g(x, y)=max (x, y) -min (x, y) , then f(g(-1,(-3)/(2)), g(-4,-1.75)) equals