Home
Class 12
MATHS
Show that a^(2)cotA+b^(2)cotB+c^(2)cotC=...

Show that `a^(2)cotA+b^(2)cotB+c^(2)cotC=(abc)/(R)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC prove that a^2cotA+b^2cotB+c^2cotC=(abc)/R

In DeltaABC , prove that: cotA/2+cotB/2+cotC/2=(a+b+c)/(a+b-c)cotC/2

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^2-b^2)cotC=0

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

In any DeltaABC , prove that (b^(2)-c^(2))cotA+(c^(2)+a^(2))cotB+(a^(2)-b^(2))cotC=0 .

In any DeltaABC , prove that (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0

In Delta ABC prove that cotA + cotB + cotC = (a^2 + b^2 + c^2)/(4Delta)

For any triangle ABC, prove that : (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0 .

In DeltaABC , with usual notation show that ((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2))/(cotA+cotB+cotC)