Home
Class 11
MATHS
" 18.Prove that "a^(2)cot A+b^(2)cot B+c...

" 18.Prove that "a^(2)cot A+b^(2)cot B+c^(2)cot C=(abc)/(R)

Promotional Banner

Similar Questions

Explore conceptually related problems

r^(2) cot ""(A)/(2) cot ""(B)/(2) cot ""(C)/(2)

For any triangle ABC, prove that (b^(2)c^(2))cot A+(c^(2)a^(2))cot B+(a^(2)b^(2))cot C=

In any DeltaABC , prove that cot (A/2) + cot (B/2) + cot (C/2) = (a+b+c)/(b+c-a) cot (A/2)

In Delta ABC Prove that a cot A + b cot B + c cot C = 2 ( R + r)

In a DeltaABC, prove that: 2r le (a cot A+ b cot B+ c cot C)/(3)leR

In a DeltaABC, prove that: 2r le (a cot A+ b cot B+ c cot C)/(3)leR

In any Delta ABC, prove that cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=(a+b+c)/(b+c-a)cot((A)/(2))

In any /_ABC, prove that (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(c^(a)-b^(2))cot C=0