Home
Class 11
MATHS
यदि root(3)(a+ib)=x+iy, तो सिद्ध करें की...

यदि `root(3)(a+ib)=x+iy`, तो सिद्ध करें की
`a/x+b/y=4(x^(2)-y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If root(3)(a+ib) = x + iy, prove that : root(3)(a-ib) = x- iy .

If (x+iy)^3 = y+vi, then show that y/x+v/y=4( x^2 - y^2 )

If sqrt(a+ib)=x+iy, then possible value of sqrt(a-ib) is x^(2)+y^(2) b.sqrt(x^(2)+y^(2)) c.x+iydx-iy e.sqrt(x^(2)-y^(2))

If (x+iy)^(1/3)=a+ib,x,y,ab in R. Show that (x)/(a)+(y)/(b)=4(a^(2)-b^(2))( ii) (x)/(a)-(y)/(b)=2(a^(2)+b^(2))

If (a+ib)/(c+id)=x+iy, prove that(i) (a-ib)/(c-id)=(x-iy)( ii) (a^(2)+b^(2))/(c^(2)+d^(2))=(x^(2)+y^(2))

If x+iy=sqrt((a+ib)/(c+id)), then write the value of (x^(2)+y^(2))^(2)

(x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

(x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)