Home
Class 20
MATHS
[ If x(1)gt0,i=1,2,...,50 and x(1)+x(2)+...

[ If x_(1)gt0,i=1,2,...,50 and x_(1)+x_(2)+...+x_(50)=50,(1)/(x_(1))+(1)/(x_(2))+...+(1)/(x_(50)) equals to [ (A) 50, (B) (50)^(2) (C) (50)^(3), (D) (50)^(4)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(i)>0i=1,2,3,...50x_(1)+x_(2)..+x_(50)=50 then the minimum value of (1)/(x_(1))+(1)/(x_(2))+...+(1)/(x_(50)) equals

If x_i>0 i=1,2,3,...50 x_1+x_2...+x_50=50 then the minimum value of 1/(x_1) +1/(x_2) +...+1/(x_50) equals

If x_1gt0,i=1,2.....50 and x_1+x_2+.....x_50=50 then the minimum value of 1/x_1+1/x_2+......1/x_50 equals to.

int(1)/(50-2x^(2))dx

int (x^(49) tan^(-1)x^(50))/(1+x^(100)) dx = k[tan^(-1)(x^(50)]^(2) + c then k =

The value of (-50C_(0))^(2)-(-50C_(1))^(2)+(-50C_(2))^(2)-......+(-50C_(50))^(2) is equal to

the value of (50C_(0))/(3)-(50C_(1))/(4)+(50C_(2))/(5)+.........+(50C_(50))/(53) is equal to

(1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(50)*x^(50) then a_(0)+a_(2)+a_(4)+...+a_(50) is :

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50).x^(50) , then a_(0)+a_(2)+a_(4)+....+a_(50) is

"Let "f(x)=x + (1)/(2x + (1)/(2x + (1)/(2x + .....oo))). Then the value of f(50)cdot f'(50) is -