Home
Class 12
MATHS
let [x] denote the greatest integer less...

let [x] denote the greatest integer less than or equal to x.
Then `lim_(xto0) (tan(pisin^2x)+(abs.x-sin(x[x]))^2)/x^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [x] denote the greatest integer less than or equal to Then: lim_(x to 0) (tan (pi sin^2x) + (|x|-sin (x[x]))^2)/x^2 :

lim_(xto0)(tan2x)/(sin5x)

if [x] denotes the greatest integer less than or equal to x, than lim_(xrarr0)(x[x])/(sin|x|) , is

Let [x] denotes the greatest integer less than or equal to x and f(x)= [tan^(2)x] .Then

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

If f(x)={:(sin[x]","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).