Home
Class 12
MATHS
" If are the cube roots of unity,then pr...

" If are the cube roots of unity,then prove that "(1)/(2+omega)+(1)/(1+2 omega)=(1)/(1+omega)

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1 , omega , omega^(2) are the cube roots of unity, then prove that 1/(2 + omega) + 1/(1+2 omega) = 1/(1 + omega) .

If 1, omega , omega^(2) are the cube roots of unity, then prove that 1/(2 + omega) + 1/(1 + 2 omega) = 1/( 1 + omega) .

If 1, omega, omega^(2) are three cube roots of unity, prove that (1)/(1 + omega) + (1)/(1+ omega^(2))=1

If omega be an imaginary cube root or unity, prove that (1)/(1+2 omega)-(1)/(1+ omega)+(1)/(2+omega)=0

If omega be an imaginaryb cube root of unity,then prove that, 1/(1+2omega)+1/(2+omega)-1/(1+omega)=0

If 1, omega , omega^2 are cube roots of unity prove that (1 / (1 + 2omega)) - (1 / (1 + omega)) + (1 / (2 + omega)) = 0

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If 1, omega, omega^(2) are the cube roots of unity, prove that (1 + omega)^(3)-(1 + omega^(2))^(3)=0

If omega be a complex cube root of unity then the value of (1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega) is

If omega is an imaginary cube root of unity, then the value of (1)/(1+2omega)+(1)/(2+omega)-(1)/(1+omega) is :