Home
Class 9
MATHS
" 9."(1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......

" 9."(1)/(1.4)+(1)/(4.7)+(1)/(7.10)+...

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Find the sum to n terms of each of the following series : (1)/(1.4) + (1)/(4.7) + (1)/(7.10)+…

Find the sum of the series : (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+.... to n terms.

Let S=(1)/(1.4)+(1)/(4.7)+(1)/(7.10)+....+n terms observe the following lists

underset(n to oo)lim {(1)/(1.4)+(1)/(4.7)+(1)/(7.10)+....+(1)/((3n-2)(3n+1))}=

By using the principle of mathematical induction , prove the follwing : (1)/(1.4) + (1)/(4.7) + (1)/(7.10) + ………..+ (1)/((3n - 2)(3n+1)) = (n)/(3n + 1) , n in N

If S_(n) = (1)/(1.4)+(1)/(4.7) + (1)/(7.10) +……. to n terms, then lim_(n rarr oo) S_(n) equals :

((1)/(1.4 )+ (1)/(4.7 ) +(1)/(7.10 )+(1)/(10.13 )+(1)/(13.16)) is equal to