Home
Class 12
MATHS
" 9."x+y=tan^(-1)y:y^(2)y'+y^(2)+1=0...

" 9."x+y=tan^(-1)y:y^(2)y'+y^(2)+1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Show the differential equation : x + y = tan^(-1)y : y^(2)y' + y^(2) + 1 = 0

If cos^(-1)x+Cos^(-1)y=(pi)/2 and Tan^(-1)x-Tan^(-1)y=0 then x^(2)+xy+y^(2)=

Verify that the function x+y = tan^(-1)y satisfies the differential equation y^(2)y' + y^(2) +1=0

Verify that the function x+y = tan^(-1)y satisfies the differential equation y^(2)y' + y^(2) +1=0

tan ^(-1)((1)/(x+y))+tan ^(-1)((y)/(x^(2)+x y+1))=

If y= tan^-1(x/a) find y_2 .

The solution of differential equation (1+y^(2))+((x-2e^(tan^(-1)y))dy)/(dx)=0 is (x-2)=ke^(tan^(-1)y)xe^(tan-1)y=e^(2)tan^(-4)y+kxe^(tan^(-1)y)=tan^(-1)y+kxe^(2tan^(-1)y)=e^(2tan^(-1)y)+k

(1/y^2 \ ((cos(tan^(-1) y) + y sin(tan^(-1) y))/(cot(sin^(-1) y) + tan(sin^(-1) y)) )^2 + y^4)^(1//2) takes value

(1/y^2 \ ((cos(tan^(-1) y) + y sin(tan^(-1) y))/(cot(sin^(-1) y) + tan(sin^(-1) y)) )^2 + y^4)^(1//2) takes value

(1/y^2 \ ((cos(tan^(-1) y) + y sin(tan^(-1) y))/(cot(sin^(-1) y) + tan(sin^(-1) y)) )^2 + y^4)^(1//2) takes value