Home
Class 13
MATHS
[" If "y^(1/m)+y^(-1/m)=2x" Prove that "...

[" If "y^(1/m)+y^(-1/m)=2x" Prove that "(x^(2)-1)Y_(n+2)+(2n+1)Y_(n+2)+],[(2n+1)xY_(n+1)+(n^(2)-m^(2))Y_(n)=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x=y^(1/m)+y^(-1/m) , then prove that (x^2-1)y_(n+2)+(2n+1)xy_(n+1)+(n^2-m^2)y_n=0 .

If 2x= y^((1)/(m)) + y^(-(1)/(m)) (n ge 1) then prove that, (x^(2)-1) y_(2) + xy_(1) = m^(2)y

If y^((1)/(n))+y^(-(1)/(n))=2x then (x^(2)-1)y_(2)+xy_(1) is equal to

If y^(1/n)+y^(-1/n) = 2x then (x^2-1)y_2+xy_1 is equal to

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If y=e^(a sin^(-1)x) then show that (1-x^(2))y_(n+2)-(2n+1)xy_(n+1)-(n^(2)+a^(2))y_(n)=0

If x^m y^n=(x+y)^(m+n) , prove that (d^2y)/(dx^2)=0 .

If x^(m)y^(n)=(x+y)^(m+n) , prove that : (d^(2)y)/(dx^(2))=0 .