Home
Class 12
MATHS
" सिद्ध कीजिए कि "(vec a*vec b)^(2)<=|ve...

" सिद्ध कीजिए कि "(vec a*vec b)^(2)<=|vec a|^(2)|vec b|^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

सिद्ध कीजिए कि |vecA xx vecB|^(2) + |vecA * vecB|^(2) = (AB)^(2).

If vec a = 2vec i + 2vec j + vec kvec b = 5vec i + vec j + 2vec k then | vec a xxvec b | ^ (2) + (vec a * vec b) ^ (2) =

If vec a and vec b be perpendicular vectors, then prove that (vec a + vec b)^(2) = (vec a - vec b)^(2) .

If vec a and vec b are orthogonal vectors, prove that (vec a + vec b)^(2) = (vec a - vec b)^(2) .

सिद्ध कीजिए कि 2tan^(-1)sqrt((b)/(a))=cos^(-1)((a-b)/(a+b))

For any two vectors vec a and vec b, prove that ((vec a) / (| vec a | ^ (2)) - (vec b) / (| vec b | ^ (2))) ^ (2) = ((vec a-vec b) / (| vec a || vec b |)) ^ (2)

If (vec a xx vec b)^(2) + (vec a . Vec b)^(2) = 144 and |vec a| = 4 then |vec b| =

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =

Let | vec a | = | vec b | = 2 and | vec c | = 1 Also (vec a-vec c) * (vec b-vec c) = 0 and | vec a-vec b | ^ (2) + | vec a + vec b | = 16 then | vec a-vec b | ^ (2) + 2vec c * (vec a + vec b) has the value equal to

Let vec a, vec b, vec b, vec b are three vectors such that vec a * vec a = vec b * vec b = vec c * vec c = 3 and | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 27 then