Home
Class 11
MATHS
यदि a, b, c A. P. में हो तो साबित कीजिए ...

यदि a, b, c A. P. में हो तो साबित कीजिए कि
`a^(2)(b+c),b^(2)(c+a)" और "c^(2)(a+b)` A. P. में है

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c and d are in G.P., show that, (a-b)^(2), (b-c)^(2), (c-d)^(2) are in G.P.

if a+b+c = 0, then ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) is equal to: यदि a+b+c = 0 है, तो ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) बराबर है :

If a^(2), b^(2), c^(2) are in A.P., then (a)/(b + c) , (b)/(c + a), (c )/(a + b) are in

If a^(2), b^(2),c^(2) are in A.P prove that (a)/(b+c), (b)/(c+a) ,(c)/(a+b) are in A.P.

If a,b,c are in A.P., then a^2(b+c)+b^2(c+a)+c^2(a+b) is equal to

If a^(2) , b^(2) , c^(2) are in A.P , pove that a/(a+c) , b/(c+a) , c/(a+b) are in A.P .

If a, b, c are in A.P., prove that : (b+c)^2-a^2, (c+a)^2-b^2, (a+b)^2-c^2 are also in A.P.

If a,b,c are in H.P., then (c^(2)(b-a)^(2)+a^(2)(c-b)^(2))/(b^(2)(a-c)^(2)) =