Home
Class 11
MATHS
Prove that: i) tan36^(@)+tan9^(@)+tan36...

Prove that: i) `tan36^(@)+tan9^(@)+tan36^(@)tan9^(@)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan9^(@)+tan36^(@)+tan9^(@)tan36^(@)=1

Prove that: (a) tan 20^(@)tan40^(@)tan60^(@)tan 80^(@)=3 (b) tan9^(@)-tan27^(@)-tan63^(@)+tan81^(@)=4

tan9^(@)-tan27^(@)-tan63^(@)+tan81^(@)=

tan9^(@)-tan27^(@)-tan63^(@)+tan81^(@)=?

Prove that tan 9^(@) - tan 27^(@) -tan 63^(@) + tan 81^(@) =4

tan9^(0)-tan27^(0)-tan63^(@)+tan81^(@)

tan 9^(@) - tan 27^(@) - tan 63^(@) + tan 81^(@) =

Prove that : tan 9^@- tan 27^@- tan 63^@ + tan 81^@ = 4 .

The value of tan9^(@)-tan27^(@)-tan63^(@)+tan81^(@) is