Home
Class 10
MATHS
If sin17^(@)=(x)/(y) then prove that sec...

If `sin17^(@)=(x)/(y)` then prove that `sec17^(@)-sin73^(@)=(x^(2))/(ysqrt(y^(2)-x^(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos73^(@)=(x)/(y) Show that cosec "73^(@)-cos17^(@)=(x^(2))/(y sqrt(y^(2)-x^(2)))

If sin17^(@)=(a)/(b) then value of sec17^(@)-sin73^(@) is

Answer any two questions : If sin 17^@ = x/y , show that sec 17^@ - sin 73^@ = (x^2)/(ysqrty^2 - x^2) .

If sin 17^@ = x/y ,then the value of sec 17^@ - sin 73^@ is

Sin^(-1)(xsqrt(1-y^(2))+ysqrt(1-x^(2)))=

Prove that : sin^(-1)x+sin^(-1)y=sin^(-1)(xsqrt(1-y^2)+ysqrt(1-x^2))

Prove that ((sin^(2)73^(@)+sin^(2)17^(@)))/((cos^(2)28^(@)+cos^(2)62^(@)))=1.

If Sin^(-1)x+Sin^(-1)y+Sin^(-1)z=pi then prove that n xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xy z

The value of cos^(2)17^(@)-sin^(2)73^(@) is: