Home
Class 12
MATHS
In DeltaABC show that (b^(2)-c^(2))/(a^(...

In `DeltaABC` show that `(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a DeltaABC" show that "(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In any DeltaABC , prove that : (b^2 - c^2)/a^2 = (sin (B-C))/(sin(B+C))

In DeltaABC=(b^(2)+c^(2))/(b^(2)-c^(2))=(Sin(B+C))/(Sin(B-C)) then the triangle is

In any DeltaABC , prove that, (b^(2)-c^(2))/a^(2)sin2A+(c^(2)-a^(2))/b^(2)sin2B+(a^(2)-b^(2))/c^(2)sin2C=0 .

In any DeltaABC , prove that ((b^(2)-c^(2)))/a^(2)"sin 2a"+((c^(2)-a^(2)))/b^(2)" sin 2B+"((a^(2)-b^(2)))/c^(2)"sin 2C=0"

For DeltaABC prove that, (a-b)^(2)cos^(2)""(C)/(2)+(a+b)^(2)sin^(2)""(C)/(2)=c^(2)

In any Delta ABC, prove that :(a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

In DeltaABC , prove that: (a^(2)sin(B-C))/(sinA) + (b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0