Home
Class 12
MATHS
If A = (at^(2), 2at ) , B= ((a)/(t^(2)),...

If `A = (at^(2), 2at ) , B= ((a)/(t^(2)),- (2a)/(t) ), S(a, 0) ` then `(1)/(SA) + (1)/(SB) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

Given P (at^(2), 2at) , Q ((a)/(t^(2)) , (-2a)/(t) ) , and S(a, 0 ) , show that (1)/(SP) + (1)/(SQ) is independent of t .

If A=(t^(2),2t),B=((1)/(t^(2)),-(2)/(t)) and S=(1,0) then (1)/(SA)+(1)/(SB) is equal to

If A(at^2, 2at), B((a)/(t^2) , - (2a)/(t)) and C(a, 0) be any three points, show that 1/(AC) + 1/(BC) is independent of t .

If A(at^2, 2at), B((a)/(t^2) , - (2a)/(t)) and C(a, 0) be any three points, show that 1/(AC) + 1/(BC) is independent of t .

If A = (t^2,2t) and B = (1/t^2,-2/t) and S = (1,0), then show that 1/(SA)+1/(SB)=1

If P(t^(2),2t),Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

If P(t^(2),2t),Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

if P(t^(2),-2t) and Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

If the points : A(at_(1)^(2),2at_(1)),B(at_(2)^(2),2at_(2)) and C(a,0) are collinear,then t_(1)t_(2) are equal to

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)