Home
Class 12
MATHS
If u=log((x^(2) + y^(2))/(xy)), then...

If `u=log((x^(2) + y^(2))/(xy))`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If u = log ((x ^(2) y + y ^(2) x)/(xy)) then x (del u)/( del x) + y (del u)/(del y)=

If u=log sqrt(x^(2) + y^(2)) , then (del^(2) u)/(del x^(2)) + (del^(2)u)/(del y^(2)) is

If u = log ((x ^ (2) + y ^ (2)) / (x + y)), prove that x (u) / (x) + y (u) / (y) = 1

If x^(2) + y^(2) = 23xy , then show that 2log(x + y) = 2log 5 + log x + log y.

If log(xy)x^(2)+y^(2)," then: "((dy)/(dx))((dx)/(dy))=

If y=(log)_(e)((x)/(a+bx))^(x), then x^(3)y_(2)=(xy_(1)-y)^(2)(b)(1+y)^(2)(c)((y-xy_(1))/(y_(1)))^(2) (d) none of these

If log(xy^(3))=1 and log(x^(2)y)=1, then the value of xy is equal to (where base of the logarithm is 32)

If u (x,y) =x ^(2) + 2xy-y ^(2) then (del u)/(del x) + (delu)/(del y) is:

if x^(2) + y^(2)= 25xy , then prove that 2 log(x + y) = 3log3 + logx + logy.

If log_((x+y))(x - y) = 7 , then the value of log_((x^(2)-y^(2)))(x^(2)+2xy+y^(2)) is ______.