Home
Class 14
MATHS
2^(2^(2^2))-:((2^2)^2)^2=...

`2^(2^(2^2))-:((2^2)^2)^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the given pattern,find the missing numbers: 1^(2)+2^(2)+2^(2)=3^(2)2^(2)+3^(2)+6^(2)=7^(2)3^(2)+4^(2)+12^(2)=13^(2)4^(2)+5^(2)+()^(2)=21^(2)5^(2)+()^(2)+30^(2)=31^(2)6^(2)+7^(2)+()^(2)=()^(2)

The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4^(2),5^(2))| is

The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4^(2),5^(2))| , is

If =cos^(2)[tan^(-1)(sin cot^(-1)x)], then (dy)/(dx) is (-2x)/((x^(2)+2)^(2))(b)(2x)/((x^(2)+2)^(2))(2)/((x^(2)+2)^(2)) (d) (-2)/((x^(2)+2)^(2))

Which one is the greatest ? 3^(2^(2^2)), 3^(2.2.2), 3.2.2.2 .

The sum of the first n terms of the series 1^(2)+2.2^(2)+3^(2)+2.4^(2)+5^(2)+2.6^(2)+... is

(1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!)+....=

If A=[[1^(2),2^(2),3^(2)2^(2),3^(2),4^(2)3^(2),4^(2),5^(2)]] then |Adj A|=

If A=[[1^(2),2^(2),3^(2)2^(2),3^(2),4^(2)3^(2),4^(2),5^(2)]] then |AdjA|=