Home
Class 12
MATHS
If I=int(-pi/2)^(pi/2) 1/(1+e^(sinx))dx ...

If `I=int_(-pi/2)^(pi/2) 1/(1+e^(sinx))dx` then `I` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sinx))dx

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sinx))dx

int_(0)^(2pi)(1)/(1+e^(sinx))dx=

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

I=int_(0)^(2pi)(1)/(1+e^(sinx))dx is equal to

I=int_(0)^(2pi)(1)/(1+e^(sinx))dx is equal to

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to