Home
Class 9
MATHS
The area of the parallelogram ABCD is 90...

The area of the parallelogram ABCD is `90 CM^(2)`. Find
(i) ar (ABEF) (ii) ar `(DeltaABD)`
(iii) ar `(DeltaBEF)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the parallelogram ABCD is 90 cm^2 Find ar(ABD)

The area of the parallelogram ABCD is 90 cm^2 Find ar(BEF)

The area of the parallelogram ABCD is 90 cm^2 Find ar(ABEF)

In given figure. If area of parallelogram ABCD is 30 cm^(2) then find ar (Delta ADE) +" ar "(Delta BCE)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

IN the figure, P is a point in the interior of a parallelogram ABCD. Show that (i) ar(APB) + ar(PCD) = 1/2 ar (ABCD) (ii) ar (APD) + ar(PBC) = ar(APB) + ar (PCD)

P is a point in the interior of a parallelogram ABCD. Show that ar (Delta APD) + ar ( DeltaPBC) = ar ( DeltaAPB) + ar (DeltaPCD)

For parallelogram ABCD, ar(ABCD)=48 cm^2 . Then ar(ABC)=___ cm^2