Home
Class 11
MATHS
Prove that cos ^(2) x+ cos ^(2) (x+ ( p...

Prove that ` cos ^(2) x+ cos ^(2) (x+ ( pi )/( 3)) +cos ^(2) (x- (pi)/(3)) =(3)/(2) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that cos ^(2) x+cos ^(2)(x+(pi)/(3))+cos ^(2) (x-(pi)/(3))=(3)/(2)

Prove that, cos^(2) A + cos^(2) (A + pi/3) + cos^(2) (A - pi/3) = 3/2

Find the value of cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))

Prove that cos ^(3) (x-(2pi)/(3)) + cos ^(3) x + cos ^(3) (x + (2pi)/(3)) = (3)/(4) cos 3x.

Prove that: cos^(2)A+cos^(2)(A+(2 pi)/(3))+cos^(2)(A-(2 pi)/(3))=(3)/(2)

Prove that: cos^(2)A+cos^(2)(A+(pi)/(3))+cos^(2)(A-(pi)/(3))=(3)/(2)

Prove that: cos^(2)theta+cos^(2)((pi)/(3)+theta)+cos^(2)((pi)/(3)-theta)=(3)/(2)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

The range of cos^(2)(2(pi)/(3)-x)+cos^(2)(2(pi)/(3)+x) is